稠油油藏火驱驱替特征实验研究

2021-12-14 07:16何厚锋关文龙蒋有伟唐君实席长丰郑浩然王晓春
油气地质与采收率 2021年6期
关键词:气驱火驱产液

李 秋 ,何厚锋,关文龙,蒋有伟,唐君实,席长丰,郑浩然,王晓春

(1.中国石油勘探开发研究院,北京 100083;2.中国地质大学(北京)能源学院,北京 100083;3.提高采收率国家重点实验室,北京 100083)

中国稠油资源较为丰富,主要分布在辽河、新疆、胜利、塔河、吐哈等油田区块[1-3]。随着中国大部分稠油油藏相继进入蒸汽吞吐或蒸汽驱中后期,稠油老油田面临开发年限较长、采出程度较高、可采储量开发殆尽等问题,经济效益变差[4-6],油田亟待进一步大幅度提高采收率的接替技术。然而,由于稠油黏度高、地下流动性差、油藏压力低等特点,绝大部分提高采收率技术对稠油油藏的适用性较差,提高采收率效果有限[7-8]。火烧油层技术也被称为火驱(In-situ combustion),是一种重要的稠油热力采油技术,其机理是通过注气井向地层连续注入空气并点燃油层,实现层内燃烧,从而将地层原油从注气井推向生产井[9-10]。火烧油层技术因其特殊的开采原理,具有热效率高、能量消耗少、驱油效率高等特点。对稠油油藏,尤其是注蒸汽开发后的稠油油藏具有良好的适应性,是极具潜力的稠油油藏注蒸汽后续接替开发技术[11-12]。随着火驱理论研究的深入和注气、产出工艺的逐渐成熟,火驱应用规模正迅速增加。

火驱的驱替特征主要是指火驱开发过程中的注入和产出变化,是火驱开发方案设计和跟踪调控的基础[13-15]。研究火驱的驱替特征,可以加深火烧驱油机理的认识并对矿场火驱的开发效果进行判断;并且可根据对驱替特征的认识,有依据地指导其他油藏进行火驱开发。由于发生了复杂的物理化学过程,火驱的驱替特征与水驱等常规油、气、水三相渗流存在较大区别,主要表现为:①燃烧前缘造成的高温区带对孔隙中的所有流体具有无差别的驱扫效果。随着燃烧前缘的扩展,已燃区内原有的油水被彻底驱扫。这与常规渗流过程中各相的饱和度逐渐变化不同,火驱燃烧前缘处的油水饱和度的变化是突变的,因此研究火驱的驱替特征无法直接套用常规的渗流理论。②前期实验和矿场的经验表明,火驱开发时生产井日产油量和含水率随着持续注气会逐渐达到稳定。而其他气驱过程中,含气率随着生产井见气后迅速增加直至达到100%(即矿场上的气窜现象),均说明火驱过程具有独特性和复杂性。因此,有必要利用综合物理模拟技术,通过多组实验研究火驱的驱替特征,预测火驱的矿场开发表现。

为此,笔者选取了新疆、辽河和国外某油田的具有代表性的4 种稠油油藏样品,设计了多组燃烧管实验。利用实验结果并结合生产实际系统地探索了火驱的驱替特征,对火驱实验点火前产液量、火驱过程产液动态、火驱含水率特征、火驱与烟道气驱的联系及火驱采出程度和注气量的关系进行了研究和总结。

1 实验部分

1.1 实验原理

火驱开发有线性井网和面积井网2 种井网形式。线性井网条件下的火驱技术是采用行列井网,将一排井作为注气井,相邻的一排或多排井作为生产井,在地层中形成近似线性且与注采井排平行的燃烧前缘,从而将原油驱向生产井排的技术。当地层存在一定倾角时,通常选择从构造高部位向构造低部位驱替。由于该井网具有注采关系简单、平面波及效率高等特点而被广泛采用。罗马尼亚Supla⁃cu油田火驱项目和新疆油田红浅1井区火驱项目均采用线性井网火驱技术[16-17]。

线性井网条件下,地层流体的流线呈近似平行的直线,其方向与燃烧前缘垂直。从燃烧前缘开始,沿流线方向取一个圆柱状控制体作为研究对象,对其传热和燃烧过程进行分析。研究发现,当燃烧前缘向前推进时,控制体径向的燃烧主要受轴向热传导过程的影响。随着燃烧前缘的推进,控制体中轴向各处依次被点燃,出现温度峰值。因此,对该控制体的研究有望揭示火驱的复杂物化驱油机理。

实验室内通过填砂模型模拟上述控制体的多孔介质,即在填砂模型圆柱面上安装加热器,并通过控制系统实现加热器温度与填砂模型内部对应位置上的温度相同,从而创造绝热环境。此时填砂模型径向传热可忽略不计,燃烧沿着轴向传播。通过监测轴向温度的变化规律可捕捉火驱的峰值温度和升温速率等信息,通过测量产出流体的流量和组分可刻画火驱的驱替特征,这就是一维热跟踪燃烧管实验平台的基本原理。

由于火驱过程同时包含原油氧化反应、相态变化和非等温多相渗流过程,其物理模拟需要考虑的相似准数极为繁杂。中外诸多学者对火驱实验的相似准数作了相关研究[18-20]。然而,要想满足所有相似准数是极难实现的。实际物理模拟过程中,需根据研究目的突出主要的相似准数,牺牲次要的相似准数。而绝热条件下的一维燃烧管模型可以看作是对地层条件下垂直穿过燃烧前缘面的相等尺寸的圆柱形油藏空间的模拟。此外,火烧油层技术中原油与空气在地层中的燃烧反应可以概括为:

从(1)式可以看出,火驱的机理复杂,包括氧化反应放热以及产生烟道气等。通过监测火驱过程中的燃烧温度以及测定火驱过程中原油与空气燃烧产生的尾气成分可以推算出必要的燃烧参数以及地层的燃烧状态[21-22]。

1.2 实验装置及仪器

实验采用高温高压热跟踪补偿一维燃烧管实验平台(图1),一维燃烧管实验装置的参数包括:模型水平放置;燃烧管长度为115.0 cm,直径为5.0 cm,耐压为5 MPa,耐温为650 ℃;高压舱耐压为25 MPa,耐温为80 ℃;气液分离器体积为800 mL,可监测O2,CO2,CO,CH4等气体组分。一维燃烧管实验分为注入系统、模型本体、采集控制系统、产出系统等4 个主要系统,通过实时监测燃烧过程中沿程燃烧温度、沿程压力、产出气体组分、产出液体动态及组分等参数,为火驱技术机理和矿场应用提供必要技术参数[23-25]。

图1 高温高压热跟踪补偿一维燃烧管实验平台示意Fig.1 Schematic diagram of experimental platform of onedimensional combustion tube for heat tracking compensation under high temperature and high pressure conditions

燃烧管通过高压舱模拟地层压力,最高实验压力为25 MPa,涵盖了绝大部分稠油火驱的应用案例。通过壁面加热器自动跟踪补偿技术可以实现燃烧管壁面和内部岩心温度同步,从而实现近绝热环境,确保燃烧过程与地层具有极高的相似性。通过降低模型本体壁面厚度,减少热量沿模型本体的轴向传导,最大限度降低实验误差,实现对真实地层条件的模拟,从而确保测试数据的科学性、重复性和稳定性。

1.3 实验样品

为了增强实验结果的普遍性和代表性,本次实验选取了新疆、辽河和国外某油田的油样共4份,分别编号为油样1~4。每份样品进行了多次燃烧管实验,并选取典型实验数据进行分析。由各油样的黏温曲线(图2)可知,随着温度升高,油样黏度逐渐降低。

图2 各油样的黏温曲线Fig.2 Viscosity-temperature curves of oil samples

1.4 实验设计

孔隙度 实验采用石英砂填砂模型模拟地层多孔介质。在实验准备阶段,先对填砂模型进行抽真空,然后利用自吸作用饱和水并测量孔隙度。

含油(含水)饱和度 利用实验原油进行油驱水过程直至出口端不再有水产出为止。通过计量注入和产出的油、水的体积计算初始含油(含水)饱和度。实验条件下,稠油油藏样品的初始含油饱和度一般大于85%。这是由于稠油油藏样品黏度较高,油驱水过程的束缚水饱和度较低。实际条件下油藏初始含油饱和度较低,若稠油油藏已经经过长时间注蒸汽开发,地层已形成大量次生水体,在此基础上火驱,其初始含油饱和度更低。为了揭示初始含油饱和度对火驱的影响,对油样2进行火驱时,在油驱水过程结束后转而进行了0.5 PV 的水驱油过程,将初始含油饱和度降低到68%。因此本实验结果代表了较高初始含油饱和度条件下的情况,和实际火驱过程存在一定差异,对本实验结果的应用和理解要考虑到初始含油饱和度的差异。

点火温度 火驱矿场实践中点火温度一般在450 ℃以上。实验过程中,由于填砂管尺寸较小,为了减少点火期间注入气体对剩余油区的影响,缩短点火过程,将点火温度提高至500 ℃。

初始实验温度 稠油油藏埋藏较浅,初始油藏温度较低,约为30 ℃。经过长期注蒸汽开发后油藏温度分布存在一定的非均质性,注入井周围温度较高(最高可能达到200 ℃),远井区域温度较低。为了兼顾实验过程的可操作性和实验结果的代表性,设置火驱前初始实验温度为80 ℃。

主要实验参数如表1所示。为提高实验结果的可信度,同一实验组合条件进行多次实验,检查关键参数的可重复性。油样1 进行了3 次实验,其余油样均进行了2次实验。重复实验的结果表明设计的实验方法具有良好的重复性,2 次实验结果的相对差别小于10%。

表1 主要实验参数Table1 Main experimental parameters

2 结果分析与讨论

2.1 火驱实验点火前产液量

一维燃烧管实验过程中,若直接开启点火器,待其温度达到点火温度后注入空气,易造成裂解结焦堵塞气流通道而无法注入气体的情况,因此,点火前为确保整体流体管汇系统的通畅,需要从燃烧管注入端以较低的速度注入氮气。点火过程中,也需要注入氮气以避免低温条件下原油的氧化过程对后期燃烧产生的影响。点火器温度达到点火温度之前,向模型中注入的氮气会驱扫出一定的油水混合物,称为点火前产液量。实际火驱实践中,注入的氮气在地层条件下相对于地层孔隙空间而言是可忽略不计的,其对生产动态的影响较小。而实验过程中这一阶段注入的氮气可达到油藏条件下1 PV 甚至更多。其对火驱动态也会产生不可忽视的影响,因此有必要对点火前产液量进行研究。

从4 组油样点火前阶段产液量对比(图3)可以看出:随油样黏度的增加,点火前产液量显著下降,说明点火前注氮气对稠油燃烧管实验影响较小,而对稀油实验结果影响较大。另外,点火前阶段产液量可近似看作氮气驱的驱油效率。诸多学者已经从室内实验证明了氮气驱驱油效率与黏度相关性极高,这与本实验的结论一致[26-27]。另一方面也说明氮气驱对于原油黏度的敏感性,氮气驱更适合应用于低黏油藏。

图3 4种油样点火前阶段产液量Fig.3 Liquid production volumes of four kinds of oil samples before ignition

2.2 火驱产液动态特征

为了方便统一对比,将累积产液量和注气量换算成油藏条件下所占孔隙体积的倍数,用孔隙体积倍数表征产液量和注气量有利于实验结果的横向对比,并将结果汇总(图4)。从图4 可以看出,由于火驱实验点火前会注入氮气并驱出少部分液体,导致注气量为0 时也具有产液速率,且黏度越低初始产液速率越高。在实验初期,油样1由于黏度最低,原油被吹出,因此初始产液速率最大,而之后驱替过程较为平稳。相反,油样4黏度最大,其产液速率波动较大。随着注气量的持续增加,产液速率在初期极低,然后增加,再回落,最后大幅增加。这说明在高黏度条件下火驱时原油是一股一股产出的,是一种间歇性生产过程。这一特征与新疆油田红浅1井区火驱先导试验的生产动态特征一致[28]。

图4 4组油样的产液速率变化Fig.4 Liquid production rates of four groups of oil samples

油样2 燃烧管实验的初始含油饱和度较低,点火后不久便出现了产液量的小高峰,一度达到0.05 PV。油样3 产液过程相对稳定,点火后不久即达到了产液量高峰期,然后维持该产液速率稳定生产。结合油样1,2,3 的实验发现,以油样1,2,3 分别作为研究对象时,在前中期产液速率较大,之后产液速率逐步下降。说明当稠油油藏黏度较低时,火驱技术在稠油油藏开发前期即可较快地提高采收率。

油样4 属于超稠油,在油藏温度条件下火驱产液量几乎为0。说明当原油黏度过高时,原油在地层条件下流动性极差,火驱技术也无法将其驱动。实验后期,燃烧前缘推进到燃烧管的后半段,燃烧管内部温度超过150 ℃,此时超稠油流动性显著增强,因此大量产液。故超稠油火驱主要在中后期产液。实际地层条件下,注采井间距离远大于实验条件,井间区域无法通过火驱进行有效加热,地层温度较低,原油流动性极差,几乎不产液。除非有先遣技术实现注采井间的热连通,在火驱之前将地层温度大幅提高,否则火驱将难以动用超稠油油藏。

2.3 火驱含水率特征

利用蒸馏法将产出液进行油水分离,从而研究产出液的含水率。由于进行蒸馏所需的样品量不能过少,因此只能根据产液量将相邻的多个样品合并,导致含水率的数据点明显少于产液量(图5)。从图5 中可以看出,在束缚水饱和度条件下进行火驱时,点火初期含水率一般较低,不超过5%。与所用油样的含水率近似,说明模型中的束缚水并未参与渗流过程。当模型存在可动水体时(油样2),火驱初期含水率较高,达到40%左右。待可动水体大部分被采出以后,含水率逐渐下降并稳定在15%左右。说明当地层存在可动水时,地层水会优先采出。这是由于水相流度远高于油相,气驱过程中水会优先采出。当地层水排出殆尽,火驱逐渐恢复到以产油为主的生产过程。新疆油田红浅1井区火驱先导试验和辽河油田锦91 块边底水油藏火驱项目的生产动态也印证了该现象[29]。对于蒸汽吞吐技术开发的油田来说,多轮次的蒸汽注入会造成地层水含量较大的特点。在这种前提下,使用火驱技术可能会使油田含水率保持稳定或者下降,这有利于提高采收率。而其他热采技术,对于高含水油藏并没有像火驱技术一样的良好适应性,表明若将火驱作为多轮次蒸汽吞吐后续开发技术,可以较好地挖掘油藏采油潜力。

图5 火驱实验4组油样的含水率变化Fig.5 Water cuts of four groups of oil samples in fire flooding experiment

2.4 火驱采出程度与烟道气驱采出程度对比

火驱剩余油区尚未受到燃烧前缘高温的影响,主要受烟道气驱作用,因此从提高采收率效果上来说,火驱与烟道气驱关系密切。为了研究火驱和烟道气驱的关系,在相同条件下进行火驱和烟道气驱实验。本次实验的烟道气由15%的CO2和85%的N2组成[30],驱替速度设置为0.7 L/min。实验结果表明(图6),火驱和烟道气驱在前期的采出程度曲线斜率相近,说明火驱初期的驱油机制与烟道气驱相近。随着气体的持续注入,两者均出现拐点(约1 PV),但火驱的采出程度与气体注入量之间的斜率显著高于烟道气驱。后者在注气量超过10 PV 后采出程度几乎无增加,而火驱则表现出持续的采油过程。

图6 采出程度与注气量的关系Fig.6 Relationship between recovery and gas injection volume

为了研究烟道气驱对于温度的敏感性,进行不同温度下的烟道气驱实验(图7)。可以发现不同温度条件下烟道气驱实验的生产特征曲线相似,初期采出程度随着温度的升高而显著提高。相比火驱而言,烟道气驱的驱油效率较低,最高仅为55%。说明烟道气驱的主要采油期集中在开发初期,注气量0.5 PV 以前的采出程度占总采出程度的75%以上。

图7 不同温度下烟道气驱采出程度与注气量的关系Fig.7 Relationships between recoveries by flue gas flooding and gas injection volumes at different temperatures

为了对比火驱和烟道气驱的提高采收率效果差异,对实验中相同注气量条件下火驱与烟道气驱采出程度的值作差。从相同注气量下火驱对烟道气驱的采出程度的差与注气量的关系(图8)可以发现,火驱对烟道气驱的采出程度之差与注气量之间呈现较好的线性特征。考虑到火驱过程中油墙的稳定推进对火驱采油的影响,可认为火驱是烟道气驱和油墙的稳定驱油2个过程的叠加效应。

图8 火驱对烟道气驱的采出程度之差与注气量的关系Fig.8 Relationship of difference in recovery between fire flooding and flue gas flooding with gas injection volume

2.5 火驱采出程度和累积注气量关系

从火驱采出程度与累积注气量的关系(图9)可以看出,火驱的采出程度与累积注气量之间呈近似线性的关系,而水驱或氮气驱的采出程度曲线随注水(注气)量的变化往往不具有这样的特点。当原油黏度较低时(油样1),火驱特征曲线表现出上凸的特征,采出程度与累积注气量之间呈凸函数关系,说明低黏度条件下,火驱一开始即有原油采出,前期采油速度较快,随着火驱的进行而逐渐降低;当原油黏度较高时(油样4),火驱特征曲线则表现为下凹的特征,说明当原油黏度较高时,火驱初期的一段时间几乎不产油,只有当火驱进行到一定程度,地层温度上升后,原油具备了足够的流动性才能被采出。因此需要有针对性地对地层进行预热开发,例如可考虑研究低轮次蒸汽吞吐能否提高火驱开发的采油效果。此外,对于火驱采出程度与累积注气量关系,能否用数学方程对其进行较为精确的描述,将是我们下步研究工作的重点。

图9 火驱采出程度与累积注气量的关系Fig.9 Relationships between recovery by fire flooding and cumulative gas injection volume

3 结论

通过一系列不同原油黏度条件下的稠油油藏火驱一维燃烧管实验较为系统地研究了火驱实验的驱替特征,发现了火驱阶段产液速率主要受原油黏度影响,黏度越大,火驱产液速率波动越剧烈,初期产液速率越小,产液阶段越集中在中后期;实验室条件下的油样含水率较低,而矿场油藏含水率较高,更易出现初期只产水不产油的现象;将火驱实验与烟道气驱实验的产油动态对比,发现当注气量小于1 PV 时,二者生产动态特征相近。而当注气量超过10 PV 后火驱可以持续产油,而烟道气驱实验的采出程度增加幅度极小;此外当原油黏度较低时,采出程度与累积注气量之间呈凸函数关系,火驱初期就有原油采出,前期采油速率较快,随着火驱的进行而逐渐降低;当原油黏度较高时,火驱特征曲线则表现为下凹的特征,火驱初期几乎不产油。只有随火驱进行,地层温度升高,原油流动性增强,才开始产油。

总之,稠油油藏火驱开发的效果与稠油黏度相关,黏度过大不利于火驱开发。对比火驱和烟道气驱的开发效果来看,火驱具有持续产出和采收率高的特点。另外,通过系列实验认识到稠油油藏火驱的采出程度与注气量呈近似线性的关系,这从机理上说明,若在矿场火驱开发中获得较高的原油采收率,应当保证足够的累积注气量。针对火驱采出程度和注气量的这种近似线性的关系,建议下一步对其进行深入理论研究及公式推导,期望推导并总结形成类似水驱特征曲线的火驱特征曲线,从而指导稠油油藏火驱的开发应用。

符号解释

m——产出气中CO2与CO含量的比值;

x——火驱燃料的碳原子数;

y——火驱燃料的氢原子数。

猜你喜欢
气驱火驱产液
考虑多因素的多层合采产液量劈分模式研究
一种新型油藏气驱采收率预测图版
靖边畔沟长6油层采油制度效益研究
低渗透油藏提高采收率技术现状与挑战
辽河油田火驱开发技术进展
火驱油藏工程分析与设计
裂缝性潜山气驱试验与研究
渤海J油田化学驱无因次产液指数的变化规律
改“堵”为“疏”水火“相容”我国首个边水(水淹)稠油油藏火驱获突破
注气驱油藏新型气驱特征曲线推导及应用