太白银莲花地上部分中皂苷类成分的提取和鉴定

2022-02-11 12:29王啸洋李慧陆云阳徐健张艳华汤海峰
环球中医药 2022年11期
关键词:吡喃质子甲基

王啸洋 李慧 陆云阳 徐健 张艳华 汤海峰

毛茛科(Ranuneulaeeae)银莲花属(Anemone)植物在全世界各大洲均有分布,中国约产52种,多数分布于东北、西南和西北等地的高山地区,其中部分品种可供药用、观赏、农药等用途[1-2]。该属在中国民间作为药用的约有15种,其中多被银莲花的根茎为《中国药典》收录的传统中药两头尖,其它常见药用品种有九节菖蒲(阿尔泰银莲花根茎)、蜈蚣三七(林荫银莲花根茎)、破牛膝(小花草玉梅根茎)、铜骨七(西南银莲花根茎)等,具有祛风除湿、解毒止痛、舒筋活血等功效,主治风湿痹痛、痈疽、跌打损伤等[3-5]。现代药学研究表明,本属植物含有三萜皂苷、黄酮、香豆素、氨基酸等化学成分,其中三萜皂苷为主要活性成分,具有抗肿瘤、抗炎、镇痛、抑菌等药理作用[6-7]。太白银莲花(Anemonetaipaiensis)是陕西省特有银莲花属植物,主要分布于秦岭东西太白山和佛坪大涧沟区域[8]。课题组前期已对该植物根茎进行了较为系统的化学成分研究,从中分离得到一系列三萜皂苷类化合物,其中部分化合物显示出良好的生物活性,值得进一步的深入研究[9-14]。对该植物地上部分也开展了研究,以期为该植物下一步的开发与利用提供更多实验依据。在前期研究基础上[15-16],本文继续报道对该植物地上部分乙醇提取物正丁醇萃取部位化学成分的研究工作,为该植物的进一步开发研究提供理论依据。

1 材料与方法

1.1 仪器与试剂

液相色谱仪为Dionex P680型 (美国Dionex公司),配YMC-Pack R&D ODS-A半制备液相色谱柱(20 × 250 mm,5 μm,日本YMC公司);质谱仪为Micromass Quattro(美国Waters公司);气相色谱仪为Finnigan Voyager(美国Finnigan公司),配L-Chirasil-Val气相色谱柱(25 m×0.32 mm,0.25 μm,美国Agilent公司);旋光仪为Perkin-Elmer 341型 (美国Perkin-Elmer公司);核磁共振(nuclear magnetic resonance,NMR)仪为Bruker AVANCE-500型 (瑞士Bruker公司)。柱色谱与薄层色谱硅胶(青岛海洋化工厂),反相柱色谱硅胶(ODS-A,日本YMC公司),Sephadex LH-20凝胶柱色谱填料(瑞典GE公司),色谱纯甲醇(天津科密欧化学试剂公司),其他分析纯试剂(天津富宇精细化工公司),水为纯净水。

太白银莲花于2013年8月采自陕西省秦岭太白山区域,经陕西中医药大学药学院生药教研室王继涛教授鉴定为毛茛科银莲花属太白银莲花Anemonetaipaiensis的地上部分,标本(130812)存于陕西中医药大学药学院中药标本室。

1.2 提取与分离

取太白银莲花干燥地上部分5.5 kg,粉碎为粗粉,加入5倍量70%乙醇加热回流提取3次(分别为2小时,2小时和1.5小时),提取液减压浓缩得1.1 kg浸膏,浸膏用5.5 L水分散,依次用等体积石油醚和水饱和正丁醇分别萃取3次,得正丁醇萃取物397.2 g。取正丁醇萃取物100 g,用硅胶柱色谱进行分离,三氯甲烷—甲醇—水(20∶1∶0~6∶4∶0.7)梯度洗脱,得到Fr.1~Fr.8八个流份。

Fr.4(3 g)用硅胶柱色谱分离,三氯甲烷—甲醇—水(9∶1∶0.02~8∶2∶0.08)梯度洗脱,得Fr.4.1~Fr.4.4,Fr.4.3经反相ODS柱色谱分离,甲醇—水(2∶8~10∶0)梯度洗脱得Fr.4.3.1~Fr.4.3.4,Fr.4.3.3用半制备高效液相色谱(semi-preparative high performance liquid chromatography,Semi-Prep HPLC)纯化(甲醇—水=80∶20)得化合物1 (16 mg,tR=13.7分钟)。

Fr.5(2.5 g)经Sephadex LH-20凝胶柱色谱(三氯甲烷—甲醇=1∶1)除去水溶性杂质后,再经反相ODS柱色谱分离,洗脱液为甲醇—水(2∶8~10∶0)梯度洗脱,得Fr.5.1~Fr.5.5,Fr.5.3经Semi-PrepHPLC纯化(甲醇—水=80∶20)得化合物2(6 mg,tR=14.5分钟)。

Fr.7(5 g)经Sephadex LH-20凝胶柱色谱(三氯甲烷—甲醇=1∶1)除去水溶性杂质后,用反相ODS柱色谱分离,甲醇—水(3∶7~10∶0)梯度洗脱,得Fr.7.1~Fr.7.4,Fr.7.3经Semi-Prep HPLC纯化(甲醇—水=65∶35)得化合物3 (9 mg,tR=19.6分钟);Fr.7.2再次用反相ODS柱色谱分离,甲醇—水(3∶7~10∶0)梯度洗脱,得Fr.7.2.1~Fr.7.2.4,Fr.7.2.2经Semi-PrepHPLC纯化(甲醇—水=55∶45)得化合物4 (12 mg,tR=15.5分钟)和化合物5(12 mg,tR=18.4分钟)。

Fr.8(19 g)用硅胶柱色谱分离,三氯甲烷—甲醇—水(9∶1∶0.02~6∶4∶0.5)梯度洗脱,得到Fr.8.1~Fr.8.5,Fr.8.4用Sephadex LH-20凝胶柱色谱(三氯甲烷—甲醇=1∶1)除去水溶性杂质后,用反相ODS柱色谱分离,甲醇—水(2∶8~10∶0)梯度洗脱,得Fr.8.4.1~Fr.8.4.4,Fr.8.4.2经Semi-PrepHPLC纯化(甲醇—水=55∶45)得化合物6(9 mg,tR=12.3分钟)和化合物7(31 mg,tR=16.5分钟);Fr.8.4.3经Semi-PrepHPLC纯化(甲醇—水=58∶42)得化合物8(150 mg,tR=10.3分钟)和化合物9(36 mg,tR=13.8分钟)。

1.3 酸水解和糖基的衍生分析

称取待测化合物2 mg,加入5 mL三氟乙酸溶液(2 mol/L),密闭,反应8小时 (110 ℃);反应完毕后静置放冷,加入20 mL 纯净水,用等体积乙酸乙酯萃取3次,合并水层浓缩蒸干,将残余物与2 mgL-半胱氨酸甲酯盐酸盐溶于2 mL吡啶,60 ℃水浴反应1小时,氮气吹干;向残余物中加入0.2 mLN-(三甲基硅基)咪唑和2 mL吡啶,60 ℃水浴反应1小时后,氮气吹干;将残余物用水分散并用等体积环己烷萃取3次,蒸干得糖基的三甲基硅醚化衍生物。

对衍生物进行气相色谱(gas chromatography,GC)分析,载气:氮气;进样量:1 μL;检测器温度:280 ℃;气化温度:250 ℃;程序升温:初始柱温为140 ℃,保持5分钟,以2 ℃/分钟的速度升温到180 ℃,保持5分钟,再以10 ℃/分钟的速升温到320 ℃,保持10分钟。标准糖用上述同样方法衍生并进行分析,根据样品保留时间和峰面积可确定化合物中的糖基种类和含量比例。

2 结果

2.1 结构鉴定

按照1.2所述方法步骤,从太白银莲花地上部分乙醇提取物的正丁醇萃取部位共分离鉴定了8个齐墩果烷型三萜皂苷,化合物1~8 (图1),所有化合物均为首次从该植物地上部分中分离得到。

2.2 化合物1

1H-NMR给出给出7个苷元甲基质子信号:δH0.85 (3H,s,H-25),0.87 (3H,s,H-30),0.88 (3H,s,H-29),1.02 (3H,s,H-26),1.07 (3H,s,H-24),1.18 (3H,s,H-27)和1.21 (3H,s,H-23);5个糖端基质子信号:δH4.91 (1H,d,J=6.3 Hz,Ara H-1),4.93 (1H,d,J=7.9 Hz,Glc II H-1),5.84 (1H,s,28-O-Rha H-1),6.26 (1H,d,J= 8.2 Hz,Glc I H-1)和6.32 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.68 (3H,d,J=6.2 Hz)和1.67 (3H,d,J=6.1 Hz);苷元特征质子信号:δH3.14 (1H,dd,J=3.8,13.9 Hz,H-18)和5.42 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.7 (C-1),26.4 (C-2),88.5 (C-3),39.5 (C-4),55.8

图1 从太白银莲花中分离到的化合物1~8的化学结构

(C-5),18.4 (C-6),33.0 (C-7),39.7 (C-8),48.0 (C-9),37.1 (C-10),23.6 (C-11),122.7 (C-12),144.2 (C-13),42.1 (C-14),28.1 (C-15),23.2 (C-16),47.1 (C-17),41.5 (C-18),46.1 (C-19),30.7 (C-20),33.8 (C-21),32.6 (C-22),28.0 (C-23),17.0 (C-24),15.4 (C-25),17.3 (C-26),26.1 (C-27),176.4 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (104.8,75.9,74.0,68.1,64.7),3-O-Rha C-1~C-6 (101.5,71.9,72.9,74.1,68.8,18.4),Glc I C-1~C-6 (95.5,73.8,78.7,70.7,77.8,69.2),Glc II C-1~C-6 (104.7,75.2,76.4,78.2,77.1,61.1),28-O-Rha C-1~C-6 (102.6,72.4,72.6,73.9,70.2,18.4)。以上波谱数据与文献报道基本一致[19],故鉴定该化合物为hederasaponin B。

2.3 化合物2

1H-NMR给出给出7个苷元甲基质子信号:δH0.85 (3H,s,H-25),0.87 (6H,s,H-29和H-30),1.06(3H,s,H-26),1.14 (3H,s,H-24),1.24 (3H,s,H-27)和1.27 (3H,s,H-23);6个糖端基质子信号:δH4.84 (1H,d,J=7.0 Hz,Ara H-1),4.98 (1H,d,J=7.8 Hz,Glc II H-1),5.34 (1H,d,J=7.8 Hz,Xyl H-1),5.83 (1H,s,28-O-Rha H-1),6.21 (1H,d,J= 8.2 Hz,Glc I H-1)和6.38 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.52 (3H,d,J=6.2 Hz)和1.67 (3H,d,J=6.1 Hz);苷元特征质子信号:δH3.14 (1H,dd,J=3.8,13.2 Hz,H-18),3.25 (1H,dd,J=4.2,11.7 Hz,H-3)和5.38 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.8(C-1),26.5(C-2),88.5(C-3),39.6(C-4),55.8 (C-5),18.5 (C-6),33.1 (C-7),39.7 (C-8),48.1 (C-9),37.1 (C-10),23.6 (C-11),122.7 (C-12),144.0 (C-13),42.2 (C-14),28.4 (C-15),23.8 (C-16),47.2 (C-17),41.5 (C-18),46.3 (C-19),30.8 (C-20),34.0 (C-21),32.4 (C-22),28.3 (C-23),17.3 (C-24),15.7 (C-25),17.5 (C-26),26.0 (C-27),176.3 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (105.1,75.1,74.7,69.5,65.6),3-O-Rha C-1~C-6 (101.4,72.0,82.6,73,69.8,18.6),Xyl C-1~C-5 (107.6,75.6,78.5,71.2,67.2),Glc I C-1~C-6 (95.6,73.7,78.6,70.7,78.1,69.2),Glc II C-1~C-6 (104.7,75.2,76.4,78.3,77.2,61.1),28-O-Rha C-1~C-6 (102.6,72.5,72.6,74.1,70.3,18.4)。以上波谱数据与文献报道基本一致[20],故鉴定该化合物为sieboldianoside B。

2.4 化合物3

1H-NMR给出给出6个苷元甲基质子信号:δH0.84 (3H,s,H-29),0.85 (3H,s,H-30),0.96 (3H,s,H-25),1.07 (3H,s,H-26),1.13 (3H,s,H-24)和1.15 (3H,s,H-27);5个糖端基质子信号:δH4.98 (1H,d,J=7.8 Hz,Glc II H-1),5.34 (1H,d,J=7.8 Hz,Xyl H-1),5.85 (1H,s,28-O-Rha H-1),6.22 (1H,d,J= 8.2 Hz,Glc I H-1)和6.35 (1H,s,3-O-Rha H-1),Ara H-1与其他信号有重叠;3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.51 (3H,d,J=6.2 Hz)和1.67 (3H,d,J=6.1 Hz);苷元特征质子信号:δH3.12 (1H,dd,J=3.6,13.2 Hz,H-18)和5.37 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.9( C-1),26.4 (C-2),81.1 (C-3),43.5 (C-4),47.6 (C-5),18.2 (C-6),33.0 (C-7),39.7 (C-8),48.0 (C-9),37.0 (C-10),23.6 (C-11),122.7 (C-12),144.2 (C-13),42.1 (C-14),28.1 (C-15),23.2 (C-16),47.1 (C-17),41.5 (C-18),46.1 (C-19),30.7 (C-20),33.8 (C-21),32.6 (C-22),63.8 (C-23),13.9 (C-24),16.1 (C-25),17.3 (C-26),26.1 (C-27),176.4 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (104.5,75.5,75.0,69.5,66.2),3-O-Rha C-1~C-6 (101.4,71.9,82.8,73.1,69.8,18.5),Xyl C-1~C-5 (107.4,75.5,78.4,71.2,67.3),Glc I C-1~C-6 (95.4,73.9,78.6,71.0,78.2,69.2),Glc II C-1~C-6 (104.7,75.2,76.4,78.3,77.2,61.2),28-O-Rha C-1~C-6 (102.8,72.5,72.7,73.8,70.2,18.6)。以上波谱数据与文献报道基本一致[22],故鉴定该化合物为sieboldnoside A。

2.5 化合物4

1H-NMR给出给出6个苷元甲基质子信号:δH0.83 (3H,s,H-29),0.86 (3H,s,H-30),0.96 (3H,s,H-25),1.04 (3H,s,H-26),1.11 (3H,s,H-24)和1.15 (3H,s,H-27);5个糖端基质子信号:δH4.98 (1H,d,J=7.8 Hz,Glc II H-1),5.10 (1H,d,J=6.4 Hz,Ara H-1),5.85 (1H,s,28-O-Rha H-1),6.21 (1H,d,J= 8.2 Hz,Glc I H-1)和6.24 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.61 (3H,d,J=6.2 Hz)和1.69 (3H,d,J=6.1 Hz);苷元特征质子信号:δH3.15 (1H,dd,J=3.6,13.6 Hz,H-18)和5.38 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.8 (C-1),26.2 (C-2),81.1 (C-3),43.6 (C-4),47.5 (C-5),18.1 (C-6),32.6 (C-7),39.7 (C-8),48.1 (C-9),37.0 (C-10),23.6 (C-11),122.7 (C-12),144.0 (C-13),42.2 (C-14),28.4 (C-15),23.8 (C-16),47.2 (C-17),41.5 (C-18),46.3 (C-19),30.8 (C-20),34.0 (C-21),32.4 (C-22),63.8 (C-23),13.8 (C-24),15.9 (C-25),17.5 (C-26),26.0 (C-27),176.3 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (104.5,75.4,74.7,69.5,65.6),3-O-Rha C-1~C-6 (101.4,72.1,72.5,74.1,69.8,18.6),Glc I C-1~C-6 (95.6,73.7,78.6,70.7,78.1,69.1),Glc II C-1~C-6 (104.7,75.2,76.4,78.3,77.2,61.2),28-O-Rha C-1~C-6 (102.6,72.5,72.6,74.1,70.3,18.4)。以上波谱数据与文献报道基本一致[23],故鉴定该化合物为刺楸皂苷 B。

2.6 化合物5

1H-NMR给出给出6个苷元甲基质子信号:δH0.84 (3H,s,H-29),0.86 (3H,s,H-30),0.95 (3H,s,H-25),1.09 (3H,s,H-26),1.15 (3H,s,H-24)和1.17 (3H,s,H-27);8个糖端基质子信号:δH4.92 (1H,d,J=7.8 Hz,Ara H-1),4.97 (1H,d,J=8.1 Hz,Glc Ⅱ H-1),5.03 (1H,d,J= 8.0 Hz,Glc Ⅲ H-1),5.15 (1H,d,J= 7.8 Hz,Glc IV H-1),5.35 (1H,d,J=7.7 Hz,Xyl H-1),5.84 (1H,s,28-O-Rha H-1),6.23 (1H,d,J= 8.1 Hz,Glc I H-1)和6.35 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.56 (3H,d,J=6.2 Hz)和1.68 (3H,d,J=6.2 Hz);苷元特征质子信号:δH3.14 (1H,dd,J=3.8,13.5 Hz,H-18)和5.38 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.9 (C-1),26.4 (C-2),81.1 (C-3),43.5 (C-4),47.6 (C-5),18.2 (C-6),33.0 (C-7),39.7 (C-8),48.0 (C-9),37.0 (C-10),23.6 (C-11),122.7 (C-12),144.2 (C-13),42.1 (C-14),28.1 (C-15),23.2 (C-16),47.1 (C-17),41.5 (C-18),46.1 (C-19),30.7 (C-20),33.8 (C-21),32.6 (C-22),63.8 (C-23),13.9 (C-24),16.1 (C-25),17.3 (C-26),26.1 (C-27),176.4 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (104.5,75.2,75.5,81.1,65.8),3-O-Rha C-1~C-6 (101.3,71.8,82.7,73.1,69.5,18.4),Xyl C-1~C-5 (107.8,75.6,78.6,71.2,67.4),Glc I C-1~C-6 (95.5,73.8,78.7,70.9,78.1,69.1),Glc Ⅱ C-1~C-6 (104.8,75.4,76.4,78.1,77.3,61.3),Glc Ⅲ C-1~C-6 (106.4,74.8,76.8,81.2,76.8,61.9),Glc Ⅳ C-1~C-6 (105.2,74.8,78.2,71.5,78.5,62.6),28-O-Rha C-1~C-6 (102.8,72.8,72.6,74.0,70.2,18.6)。以上波谱数据与文献报道基本一致[12],故鉴定该化合物为3β-O-β-D-吡喃木糖-(1→3)-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→4)-β-D-吡喃葡萄糖-(1→4)]-α-L-吡喃阿拉伯糖-常春藤皂苷元-28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖酯苷。

2.7 化合物6

1H-NMR给出给出7个苷元甲基质子信号:δH0.85 (3H,s,H-25),0.87 (6H,s,H-29和H-30),1.06 (3H,s,H-26),1.16 (3H,s,H-24),1.23 (3H,s,H-27)和1.29 (3H,s,H-23);7个糖端基质子信号:δH4.71 (1H,d,J=7.0 Hz,Ara H-1),4.97 (1H,d,J=7.8 Hz,Glc II H-1),5.10 (1H,d,J=7.9 Hz,Glc III H-1),5.34 (1H,d,J=7.6 Hz,Xyl H-1),5.84 (1H,s,28-O-Rha H-1),6.23 (1H,d,J= 8.2Hz,Glc I H-1)和6.29 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.54 (3H,d,J=6.2 Hz)和1.68 (3H,d,J=6.2 Hz);苷元特征质子信号:δH3.16 (1H,dd,J=3.7,13.4 Hz,H-18),3.23 (1H,dd,J=4.0,11.6 Hz,H-3)和5.34 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.8 (C-1),26.5 (C-2),88.5 (C-3),39.6 (C-4),55.9 (C-5),18.5 (C-6),33.1 (C-7),40.0 (C-8),48.2 (C-9),37.1 (C-10),23.8 (C-11),122.9 (C-12),144.2 (C-13),42.2 (C-14),28.2 (C-15),23.4 (C-16),47.1 (C-17),41.4 (C-18),46.3 (C-19),30.8 (C-20),34.1 (C-21),32.4 (C-22),28.2 (C-23),17.3 (C-24),15.7 (C-25),17.5 (C-26),26.0 (C-27),176.4 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (105.1,75.4,74.8,80.2,65.4),3-O-Rha C-1~C-6 (101.2,71.7,82.8,73.0,69.6,18.4),Xyl C-1~C-5 (107.8,75.6,78.5,71.1,67.3),Glc I C-1~C-6 (95.5,73.7,78.5,70.8,78.1,69.1),Glc II C-1~C-6 (104.8,75.4,76.3,78.0,77.2,61.3),Glc III C-1~C-6 (106.7,75.4,78.5,71.2,78.8,62.5),28-O-Rha C-1~C-6 (102.7,72.7,72.5,74.1,70.1,18.5)。以上波谱数据与文献报道基本一致[12,故鉴定该化合物为3β-O-β-D-吡喃木糖-(1→3)-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→4)]-α-L-吡喃阿拉伯糖-齐墩果酸-28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖酯苷。

2.8 化合物7

1H-NMR给出给出6个苷元甲基质子信号:δH0.84 (3H,s,H-29),0.86 (3H,s,H-30),0.95 (3H,s,H-25),1.09 (3H,s,H-26),1.10 (3H,s,H-24)和1.15 (3H,s,H-27);7个糖端基质子信号:δH4.91 (1H,d,J=7.4 Hz,Ara H-1),4.97 (1H,d,J=7.8 Hz,Glc II H-1),5.05 (1H,d,J= 8.0 Hz,Glc III H-1),5.15 (1H,d,J= 7.9 Hz,Glc IV H-1),5.84 (1H,s,28-O-Rha H-1),6.23 (1H,d,J= 8.1 Hz,Glc I H-1)和6.27 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.64 (3H,d,J=6.2 Hz)和1.69 (3H,d,J=6.2 Hz);苷元特征质子信号:δH3.16 (1H,dd,J=3.8,13.3 Hz,H-18)和5.38 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.9 (C-1),26.4 (C-2),81.1 (C-3),43.5 (C-4),47.6 (C-5),18.2 (C-6),33.0 (C-7),39.7 (C-8),48.0 (C-9),37.0 (C-10),23.6 (C-11),122.7 (C-12),144.2 (C-13),42.1 (C-14),28.1 (C-15),23.2 (C-16),47.1 (C-17),41.5 (C-18),46.1 (C-19),30.7 (C-20),33.8 (C-21),32.6 (C-22),63.8 (C-23),13.9 (C-24),16.1 (C-25),17.3 (C-26),26.1 (C-27),176.4 (C-28),33.0 (C-29),23.5 (C-30),Ara C-1~C-5 (104.6,76.1,75.3,81.6,65.4),3-O-Rha C-1~C-6 (101.6,72.1,72.3,74.1,69.6,18.6),Glc I C-1~C-6 (95.6,73.7,78.6,70.7,78.1,69.1),Glc II C-1~C-6 (104.7,75.2,76.4,78.3,77.2,61.2),Glc III C-1~C-6 (106.3,75.0,76.7,81.2,76.6,61.7),Glc IV C-1~C-6 (105.2,74.8,78.2,71.5,78.3,62.4),28-O-Rha C-1~C-6 (102.6,72.5,72.6,74.1,70.3,18.4)。以上波谱数据与文献报道基本一致[13],故鉴定该化合物为3β-O-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃葡萄糖-(1→4)-[α-L-吡喃鼠李糖-(1→2)]-α-L-吡喃阿拉伯糖-常春藤皂苷元-28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖酯苷。

2.9 化合物8

1H-NMR给出给出6个苷元甲基质子信号:δH0.84 (3H,s,H-29),0.86 (3H,s,H-30),0.95 (3H,s,H-25),1.09 (3H,s,H-26),1.10 (3H,s,H-24)和1.17 (3H,s,H-27);7个糖端基质子信号:δH4.91 (1H,d,J=7.2 Hz,Ara H-1),4.97 (1H,d,J=7.8 Hz,Glc II H-1),5.08 (1H,d,J= 7.9 Hz,Glc III H-1),5.35 (1H,d,J=7.7 Hz,Xyl H-1),5.84 (1H,s,28-O-Rha H-1),6.23 (1H,d,J= 8.1 Hz,Glc I H-1)和6.34 (1H,s,3-O-Rha H-1);3-O-Rha和28-O-Rha上的甲基质子信号分别为:δH1.55 (3H,d,J=6.2 Hz)和1.68 (3H,d,J=6.2 Hz);苷元特征质子信号:δH3.14 (1H,dd,J=3.6,13.6 Hz,H-18)和5.37 (1H,br s,H-12)。

13C-NMR (125 MHz,C5D5N)给出δC:38.9 (C-1),26.4 (C-2),81.1 (C-3),43.5 (C-4),47.6 (C-5),18.2 (C-6),32.9 (C-7),39.7 (C-8),48.0 (C-9),37.0 (C-10),23.6 (C-11),122.7 (C-12),144.2 (C-13),42.1 (C-14),28.1 (C-15),23.2 (C-16),47.1 (C-17),41.5 (C-18),46.1 (C-19),30.7 (C-20),33.8 (C-21),32.6 (C-22),63.8 (C-23),14.0 (C-24),16.1 (C-25),17.3 (C-26),26.1 (C-27),176.4 (C-28),33.2 (C-29),23.7 (C-30),Ara C-1~C-5 (104.5,75.5,75.3,80.6,65.8),3-O-Rha C-1~C-6 (101.1,71.9,82.8,73.1,69.8,18.5),Xyl C-1~C-5 (107.5,75.5,78.4,71.2,67.3),Glc I C-1~C-6 (95.4,73.9,78.6,71.0,78.2,69.2),Glc II C-1~C-6 (104.7,75.2,76.4,78.3,77.2,61.2),Glc III C-1~C-6 (106.8,75.5,78.5,71.1,78.8,62.3),28-O-Rha C-1~C-6 (102.8,72.5,72.7,73.8,70.2,18.6)。以上波谱数据与文献报道基本一致[13],故鉴定该化合物为3β-O-β-D-吡喃木糖-(1→3)-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→4)]-α-L-吡喃阿拉伯糖-常春藤皂苷元-28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖酯苷。

3 讨论

本研究在前期工作基础上,运用多种色谱手段从太白银莲花地上部分分离得到8个化合物,根据波谱数据和理化性质鉴定了它们的化学结构,均为齐墩果烷型三萜皂苷,基于2种苷元(齐墩果酸和常春藤皂苷元)和4种单糖(L-Ara、L-Rha、D-Xyl和D-Glc)组成,且均为苷元C-3和C-28位都连接寡糖基的双糖链结构。由于基本母核相同,化合物的分子结构差异主要体现在母核C-23位是否连有羟基和糖链组成上,造成化合物间的极性和性质相似,给分离工作带来一定的困难。本研究在分离过程中较多的运用了硅胶分配柱层析,即使用含水的溶剂系统(CHCl3-MeOH-H2O)作为流动相,并结合反相ODS柱色谱及制备型HPLC,分离得到了纯度较高的单体化合物。根据课题组以往获得的此类化合物抗肿瘤构效关系结论[13,24],双糖链皂苷抗肿瘤活性较弱,因此在本研究中未对上述皂苷开展抗肿瘤活性筛选实验。虽然它们不能直接作为抗肿瘤候选化合物,但可通过碱水解等化学手段获得C-28位为游离羧基的活性单糖链皂苷[12],可为后期体外、体内抗肿瘤活性研究提供更多的化合物来源。本研究丰富了太白银莲花地上部分的化学成分库,为该植物的进一步开发利用提供了实验依据。

猜你喜欢
吡喃质子甲基
UIO-66热解ZrO2负载CoMoS对4-甲基酚的加氢脱氧性能
小分子螺吡喃光致变色化合物合成研究进展*
1,2,4-三甲基苯氧化制备2,3,5-三甲基苯醌的技术进展
质子束放疗在肿瘤中的研究新进展
浅谈质子守恒
聚甲基亚膦酸双酚A酯阻燃剂的合成及其应用
质子交换膜燃料电池系统建模仿真与控制
1-O-[3-(2-呋喃基)丙烯酰基]-β-D-吡喃果糖的合成及应用
欧盟拟修订菊芋和萝卜中吡喃草酮残留限量要求
WO3/ZnO的制备及其光催化降解甲基橙研究