季节性冻土区包气带水汽热耦合运移研究进展

2022-03-11 07:14高万德陈云飞卢玉东刘秀花
农业工程学报 2022年24期
关键词:包气液态水气态

郑 策,高万德,陈云飞,卢玉东,刘秀花

季节性冻土区包气带水汽热耦合运移研究进展

郑 策,高万德,陈云飞,卢玉东,刘秀花※

(1. 长安大学水利与环境学院,西安 710064;2. 长安大学旱区地下水文与生态效应教育部重点实验室,西安 710064)

季节性冻土区占据中国超过一半的国土面积,冻融作用会显著改变土壤性质与包气带水、热传输过程,并且由于温度与气态水对土壤水分运移影响显著,开展水汽热耦合研究对于探究季节性冻土区土壤水循环过程十分关键。该研究综述了包气带水汽热耦合运移理论的提出与发展历程,阐明了季节性冻融作用对水汽热耦合运移研究中水力参数及水分相态转化过程的影响,探讨了水汽热耦合模型适用性,总结了温度梯度驱动下气态水运移规律及其重要性,并对该领域尚需加强研究的方向提出建议:1)聚焦“土壤-植被-大气”系统水循环过程,构建适用于季节性冻土区的包气带水汽热-植被耦合模型,探究土壤水资源生态效应,为植被恢复与生态系统稳定提供理论指导;2)在寒旱区工程建设中考虑气态水的影响,明确覆盖层下水汽运移机理,对建设过程中由水汽运移引起的工程病害提出具体防治措施。通过本研究梳理归纳以期为深化包气带水汽热耦合运移理论以及解决季节性冻土区相关实际问题提供科学依据与参考。

水;热;数值分析;包气带;水汽运移;水文循环;季节性冻土区

0 引 言

包气带作为地球关键带的重要组成部分,不仅是大气圈、水圈、岩石圈等相互作用的联系纽带,也为土-气界面间质能交换、土壤水热传输以及植物根系吸水等水分与能量交换活动提供了场所[1]。土壤和水是包气带中的核心要素,其中水是进行质、能交换的主要驱动力,土壤水分变化反映了蒸发、入渗、径流、截留、渗漏等多界面的水文过程及土壤水文性质[2-4]。传统的包气带水分运移研究主要围绕液态水展开,而忽略了气态水的影响。近年来随着研究深入,包气带气态水运移及水-汽相变过程对于土壤水、热传输过程的影响逐渐被证实[5-6]。尤其是对于干旱半干旱地区,气态水可为生态脆弱区植被生长及生态系统稳定提供重要水分来源,其作用不可被忽略[7-8]。

中国是世界上冻土分布面积第三大国,其中季节性冻土区占据超过一半的国土面积,且多数季节性冻土广泛分布于干旱半干旱地区[9]。在这些地区,降雨稀少且蒸发强烈,土壤干燥缺水,土地荒漠化突出,冬季土壤年冻结时间长达4~6个月。季节性冻融作用不仅会引起诸如土壤结构、容重等物理性质发生变化,同时会显著改变包气带水、热特性及其传输过程,进而影响到区内农业生产及诸多工程建设活动[10-12]。相比于非冻结时期,冻结期内由于土壤孔隙中冰的存在会阻碍液态水运移,气态水在土壤水分运移中的影响会更加明显,开展包气带水汽热耦合研究对于厘清季节性冻土区土壤水循环过程尤为关键[13]。然而,关于季节性冻土区包气带水汽热耦合运移的研究现状及应加强研究的重点领域鲜有报道。

鉴于此,本文综述包气带水汽热耦合运移理论的提出与发展过程,阐述季节性冻融作用对水汽热耦合运移研究的具体影响,探讨数值模拟技术在包气带水汽热耦合运移研究中的应用,总结温度梯度驱动下气态水运移规律及其影响,并从季节性冻土区研究实际需求的视角提出了未来亟待加强研究的重点方向,以期为深化包气带水汽热耦合运移理论以及解决季节性冻土区相关实际问题提供科学依据。

1 包气带水汽热耦合运移理论

1.1 理论提出与发展

基于Richards方程,包气带水分运移研究开始由静态、定性描述为主向动态、定量分析的方向发展。而随着水汽运移概念的提出,Philip等[14]首次将非等温条件下水汽运移过程引入包气带水分运移研究中,提出了包气带水汽热耦合运移理论,即最初的PDV理论。PDV理论认为当土壤颗粒间存在温度差时土壤水分会在较热一端蒸发、较冷一端凝结,总体蒸发与凝结速率相等,即为水汽运移速率,包气带总水分通量可被看作是由温度梯度与含水量梯度分别驱动下的水、汽通量组成。以PDV理论为基础,众多学者围绕水汽热耦合运移过程展开研究并不断完善相关理论。例如,Hanks等[15]提出若忽略温度影响,计算蒸发量时会产生约10%的误差,且这一比例在干旱条件下会增大;Milly[16]提出水分运移的驱动力之一应为基质势而不是PDV模型中的含水量,由此模型可被用于非均质土壤中的研究;Cass[17]提出了水汽通量的增强因子计算方式;Cahill等[18]通过野外试验证明浅层土壤中水汽通量不仅占据总水分通量的25%,同时也导致了超过50%的热通量。

当冬季土壤冻结后,包气带孔隙中水、汽、冰三相共存(图1)。随温度降低/升高,包气带中未冻水含量减小/增大,冰-水相变过程对于包气带水、热运移过程影响显著。基于多孔介质水分运移和热平衡理论,Harlan[19]首次提出了适用于非饱和冻土研究的水热耦合模型,并利用有限差分法求解模型。随后,Cary等[20-22]逐步完善了Harlan模型,如建立了液态水与温度之间的联系等。然而由于水-汽-冰-热耦合复杂性,在早期非饱和冻土水分运移研究中并未考虑气态水的影响。逐渐地,Nakano等[23-25]研究结果均指出深层气态水不断向冻结锋处运移会促进冰的形成,并且会主导冻层内水分运移过程,气态水对冻结情况下土壤水、热传输过程的重要性逐渐被认可。

1.2 数学方程

对于一维垂向包气带水分运移过程,当考虑气态水、冰以及温度共同影响时,土壤水、热传输控制方程可分别表示为如下形式[26]:

式中θθθ分别为土壤液态水含水量、气态水含水量与含冰量,cm3/cm3;ρρρ分别为液态水、气态水与冰密度,g/cm3;为时间,d;为垂向坐标轴(向上为正),cm;为基质势,cm;为温度,K;KK分别为等温液态水与气态水水力传导度,cm/d;KK分别为非等温液态水与气态水水力传导度,cm2/(K·d);w和L分别为蒸发潜热与冻结潜热,J/kg;为土壤热导率,W/(m·K);qq分别为土壤液态水和气态水通量,cm/d;C为土壤的体积热容量,J/(m3·K);CC分别表示土壤中液态水及气态水的体积热容量,J/(m3·K)。

图1 非饱和冻土中水-汽-冰-热耦合示意图

在水分运移方程中,方程左端包含了液态水、气态水及含冰量的变化,右端则分别为基质势梯度、重力势梯度及温度梯度驱动的液态水运移,以及基质势梯度与温度梯度驱动的气态水运移。选取van Genuchten-Mualem公式作为非饱和液态水水力传导度计算公式,式(1)中涉及的传导度及相关参数计算方式如表1所示[26]。在热传导方程中,方程左端包含了土壤热容量、冰-水相变潜热及水-汽相变潜热变化,右端分别为热传导、液态水流动引起的热扩散、气态水流动引起的热扩散及气态水相变潜热。

表1 水力传导度及相应参数计算[26]

2 冻融作用对包气带水汽热耦合运移的影响

2.1 水力参数

由表1可知,包气带水汽热耦合运移过程涉及参数较多。与未冻结时期不同,冻结后由于冰的存在以及冰-水相变过程影响,土壤水、热性质发生改变,探究冻融作用影响下的包气带水汽热耦合运移过程时需重点关注以下参数:

1)土壤冻结曲线

在土壤冻结后,包气带中未冻水含量变化受土壤温度(负温)影响,两者之间关系密切。土壤冻结曲线不仅可以刻画土壤水、热之间联系,同时也是求解水热传输方程中不可或缺的重要参数,通常情况下可通过经验公式法与土水特征曲线法求取土壤冻结曲线。

在传统研究中,学者们提出了不同形式经验公式(幂函数[27]、线性[28]、指数函数[29]等)来描述土壤冻结曲线。虽然这些经验公式形式简单,但由于不同质地土壤性质变化差异较大,且通过试验方式获取适宜的经验参数较为困难,总体上该方法在当前研究中应用面临一定困难[30-31]。

另一方面,由于土壤冻结过程与土壤逐渐排水干燥过程相似,在冻结过程中水分不断向冻结锋处运移,因而可以根据土水特征曲线的概念得到土壤冻结曲线[32]。利用Claperon方程建立负温与基质势之间关系,随后将其代入Brooks and Corey方程[33]、Garder方程[34]、van Genuchten方程[35]等土水特征曲线中,即可建立负温与未冻水含量之间关系,如下所示(以VG方程为例)[36]:

式中T为液态水冻结温度(可由基质势计算得到),K;、、为经验参数。相比于传统的经验公式计算法,通过土水特征曲线法求解结果更加精确且合理,因而被广泛应用[37-38]。

2)非饱和水力传导度

随着温度降低土壤孔隙逐渐被冰占据,土壤水分在冻土中运移过程受到影响,非饱和水力传导度显著减小。通常情况下,土壤冻结时非饱和水力传导度与含冰量密切相关,其计算方法主要有3种,分别为半理论方法、经验公式法以及基于未冻结时期水力传导度的计算方法。

第一种方法主要基于毛细管理论及吸附理论,假设冰的形成发生在毛细管中央,该方法结果与实测值拟合较好,但由于计算过程较为复杂,不易应用于数值模型中[39]。相比较而言,第二种方法计算过程简单,但与经验公式法获取土壤冻结曲线类似,该方法中涉及的参数经验值随土壤性质变化较大且不易获取,因此在相关研究中同样较少使用[40]。

由于在前两种方法存在明显的局限性,因此在当前研究中计算非饱和冻土中水力传导度时通常会采用第三种方法[41]。该方法认为土壤冻结后非饱和水力传导度减小的程度与相同基质吸力情况下土壤未冻结时的水力传导度数值有关,即可以通过土壤未冻结时土水特征曲线与饱和水力传导度计算得到。为了体现冰的出现对水力传导度降低的影响,Taylor等[42-43]提出了不同形式阻抗因子的概念,由于该方法考虑了冻融过程实际影响,其参数具有一定的物理含义,并且使用较为便利,因而被广泛应用。尽管如此,该方法同样存在不足之处,如冻结(或融化)过程中基质势不断变化而阻抗因子为定值、不同未冻水含量情况下阻抗因子的确定等问题,亟待进一步研究[41,44]。

2.2 水分相态转化

季节性冻融作用引发冰-水相变过程,对于土壤水分时空分布以及水分运移过程影响明显。根据质量守恒定律,非饱和冻土中总含水量由固、液、气三相组成,如式(4)所示。

式中为土壤总含水量,cm3/cm3。当土壤温度低于冻结点(由于土壤处于非饱和状态,冻结点会略低于0 ℃),土壤孔隙中的液态水开始转化为冰,并随着温度逐渐降低含冰量持续增大且未冻水含量显著减小,最终在温度足够低时液态水只剩下土壤颗粒附近的吸附水和薄膜水[45-47]。需要注意的是,不论温度多低,这部分水总是以液态形式存在。长期以来,明确土壤水分的相态转化过程及各组分体积分数是探究季节性冻土区水分运移过程的关键,其中气态水含量可通过监测水汽压、水汽密度等参数并利用经验公式计算获取,而液态水含量则可直接通过布设传感器来实时监测。如基于频域分解法原理的传感器,其工作原理是通过分解土壤中介电常数的实部与虚部来确定土壤体积含水量,由于土壤中各组分介电常数值相差较大,其中液态水介电常数值约为78,远超过土壤基质、冰、空气等其他组分,因而被证实适用于冻土中液态水含水量监测[48-49]。根据式(4)及相应的液态水与气态水数据,并通过烘干法测定土壤总含水量,可最终确定冻土层内土壤含冰量数值。由于在水势梯度与温度梯度作用下,土壤深部液态水与气态水不断向冻结锋处运移,因此相比于冻结之前,季节性冻土层内总含水量在融化后往往呈现出增大的趋势。

3 数值模拟技术在水汽热耦合运移研究中的应用

由于季节性冻土区野外工作的不确定性,完全依赖野外试验很难揭示复杂的包气带水汽热耦合运移过程背后机理,尤其是在当前研究中针对气态水的监测仍难以实现,因而数值模拟方法逐渐成为了相关研究的主要工具。

3.1 耦合模型构建与适用性分析

基于土壤水分运移及热传导基本理论,构建适宜的耦合模型是探究包气带水汽热耦合运移过程的基础。在不考虑冻融过程影响时,许多简单的模型被用于研究包气带水汽热耦合运移过程。随着计算机技术的发展,逐渐出现了功能较为完整且操作便利的数值模拟软件,围绕特定时刻包气带水、汽、热通量分布以及特定深度包气带水、汽、热通量变化规律展开研究,取得较多成果,相关模型也都被证实适用于野外实际研究中。

当考虑冻融过程后,受冰-水相变过程影响,耦合数值模型的构建面临较大挑战。合理的简化在确保模型精度的前提下有助下模型构建,在研究中应用较多,然而过度简化则对模型结果有较大影响。例如,采用固定冻结温度方法计算含冰量时,当计算出的土壤温度低于冻结点时,土壤中液态水全部转化为冰。由土壤冻结曲线可知,不论土壤温度多低,孔隙中总有液态水存在,含水量值与温度有关。因此这种过度简化的方法不仅会给计算结果带来较大误差,同时也并不符合实际情况[36]。此外,当考虑冻融作用后,模型计算时会出现数值程序不稳定的现象。例如,在冰-水相变过程中,由于相变潜热变化导致热容量突变会造成土壤温度计算不收敛[50]。诸如此类现象的存在,使得有必要优化程序计算过程以确保耦合模型运行稳定性。当数值程序稳定运行后,模型计算精度与耗时平衡问题同样值得注意。如何在确保获取较为精确结果的前提下,通过设置合理的时间与空间步长以控制模型运行时长有重要意义[51]。

诸如SHAW、CoupModel、Hydrus-1D、STEMMUS、COMSOL等功能强大的数值软件出现,为研究冻融作用影响下包气带水热传输过程提供了便利[52]。由于起初研究目的不同,不同软件建模时采用的控制方程与物理机制存在差异。例如在传统水汽热耦合运移理论中,假定土壤中空气压强与大气压强保持平衡,因而忽略了空气流动影响,只考虑了水汽扩散过程,导致了部分水汽通量计算误差。为了消除这一误差,STEMMUS中将空气压强作为状态变量,引入了空气流动方程,考虑了水汽对流、弥散过程影响[13]。相比较而言,Hydrus-1D软件在包气带水、汽、热运移研究中应用最为广泛[53-55]。以该软件为例,具体介绍此类软件在水汽热耦合运移研究中的应用。基于Saito等[56]的研究成果,水汽热耦合模块被嵌入了标准版的Hydrus-1D 4.0版本中,并由此被广泛应用于土壤未冻结条件下农业灌溉、水资源合理利用等方面的研究中。以该模块为基础,结合Hansson等[26]提出的Hydrus-1D冻融模块,Zheng等[57]开发了适用于冻融过程的包气带水汽热耦合运移程序,并利用榆林、锡林郭勒、玛曲等不同冻土区实测数据验证模型精度,证实所建立的模型适用性。在修改后的程序中,基于有效能量方法修改了相变过程中由于表观热容增大引发的数值计算问题,并优化了含冰量计算程序,相比于Hansson版本,模型运行稳定性显著提高,且并未遇见数值计算问题。

3.2 气态水运移规律及其重要性

利用上述模型,学者们围绕包气带水汽热耦合运移过程展开大量研究,其中关于液态水运移机制及其影响研究取得较多成果,在此不过多介绍,重点探讨气态水运移规律。通常在季节性冻土区,4—10月以及11月—次年3月间土壤分别处于未冻结与冻结状态。如图2所示,受包气带温度季节性变化影响,水汽运移呈现显著的季节性变化规律。在未冻结时期,表层土壤温度较高,温度梯度方向向下,驱动气态水向土壤内部运移。土壤内部存在有聚集型零通量面,随着土壤温度不断升高,其位置也不断向下移动。通常在夏季7月、8月时温度梯度最大,此时向下的水汽通量值最大。而从9月开始,随着气温下降,土壤温度降低,包气带向外放热,浅层开始出现发散型零温度梯度面并不断向土壤内部移动,驱动深层气态水不断向表层运移。整体来看,在非冻结期内气态水主要向包气带内部运移,而在土壤冻结后则主要向地表处运移。此外,气态水同样存在显著的日变化规律,主要表现为白天浅层土壤温度较高时向深部运移,而在夜间主要由深部向地表处运移。

注:箭头表示包气带内不同时期气态水运移方向。

相比于液态水通量,在包气带绝大多数层位中气态水通量数值相对较小,尤其是在40 cm以下范围内,气态水通量普遍小1~2个数量级。但在浅层土壤中,气态水对水分运移的影响是不可被忽略的,造成这种现象一方面是由于浅层土壤含水量较低,土壤通气孔隙较多,导致水力传导度较大;另一方面,浅层土壤温度受气温变化影响明显,温度梯度较大,即水汽运移驱动力较大。对于水资源较为短缺的干旱半干旱地区,土壤含水量较低、液态水通量小,浅层土壤中水汽通量在总水分通量中占比往往在10%~30%之间,并且水-汽相变过程对于热通量变化同样影响显著[58-61]。而对于降雨极为稀少的干旱地区,Du等[62]研究表明浅层气态水通量在总水分通量占据主导地位。虽然在深层土壤中水汽通量数值较小,但气态水却在始终不间断运移,累积的水分对于干旱的包气带而言同样至关重要[63]。由于干旱半干旱地区降雨主要集中在夏季,在其他时期降雨较少,包气带含水量偏低,而土壤孔隙中相对湿度总是处于近饱和状态,只要温度变化就会引发水汽凝结现象,在温度梯度作用下水汽源源不断从包气带内部向浅层迁移并凝结,可以补充浅层土壤中由于蒸发作用所消耗的水分。此外,在冬季土壤冻结后,冰的出现会阻碍液态水运移,造成液态水通量数值减小1~5个数量级,此时气态水将会主导冻层内水分运移。并且在温度梯度驱动下,深层土壤中气态水源源不断向冻结锋处运移,引起冻层内总含水量增大[64]。可以看出,不论是在非冻结期还是冻结期,温度梯度驱动下的气态水通量均为总水分通量的重要组成部分,其对季节性冻土区包气带水分与能量平衡影响不可被忽略。

4 现有研究不足及进一步研究建议

尽管相关研究已经取得了一定的成果,为深化包气带水循环理论提供了重要参考,但是在现有研究中仍存在一定局限性。受季节性冻土区野外试验与监测条件限制,部分研究现象以及耦合模型建立是基于室内试验数据开展。相较于复杂的野外实际情况,如土-气界面复杂性、土壤非均质性等,室内试验存在一定局限性,并不能很好反映野外实际情况。并且由于耦合模型建立过程中涉及参数较多,参数精度对于模型验证及模拟结果可靠性影响较大,对于诸如水汽增强因子与冰的阻抗因子等参数而言,其数值随土壤质地等条件改变而明显变化,因而应尽可能通过采用试验手段而非经验公式来获取此类参数,并结合反算等方法进一步优化参数,以获取更为精确且可靠的研究结果[65]。同时,现有的研究大多偏重于理论探索,在实际应用层面取得的成果较少。基于现有包气带水汽热耦合运移研究理论成果,结合季节性冻土区实际情况,应围绕生态水文、水灾害等实际问题展开进一步研究:

1)由于季节性冻土区多属于干旱半干旱区域,区内降雨稀少,植被较为稀疏、生长缓慢,土地荒漠化突出,这些地区因此成为生态建设的重点区和“硬骨头”。虽然实施了一系列生态保护措施,沙地植被发生明显变化,但由于部分地区种植密度过大,植物耗水过多,不仅导致了地下水位下降,并且由于沙地土壤水分被大量消耗,引发了人工造林植被的衰退和死亡现象[66-67]。受降水较少及部分地区地下水位较深影响,土壤水资源成为诸如沙柳、樟子松等固沙造林植被生长的重要支撑,生态效应显著,而其中气态水通量的影响不可忽视,水汽凝结与聚集有助于植被克服土壤干旱胁迫,对于维系荒漠植被生态系统有重要意义[54,68-69]。然而在现有研究中,关于气态水对植被根系吸水的影响尚未形成统一的认识。更重要的是,受冻融期根系吸水影响因素复杂及其与土壤水、汽运移之间的互馈作用不明等制约,对于季节性冻土区土壤水资源生态效应研究仍处于探索阶段。通过建立合理的植被根系生长与吸水模型,将其耦合进包气带水汽热传输方程中,聚焦“土壤-植被-大气”系统水循环过程,最终建立适用于季节性冻土区、可获得稳定及精确数值解的包气带水-汽-冰-热-植被耦合模型,阐明包气带水汽热-根系吸水耦合动力学机制,可为生态系统脆弱区的植被恢复与生态系统稳定提供科学依据。

2)在温度梯度驱动下,冻融期内气态水向土壤表层聚集、迁移的过程,对于许多工程建设活动影响较为明显。如李强等[70]发现在西北干旱半干旱地区,高速公路与铁路路基存在有大范围冻胀以及稀泥状土现象,这主要是受不透气覆盖层影响。在覆盖层下气态水运移受阻,以冰的形式储存于表层土体,并且由于冻层内水汽密度减小也加剧了深层水汽向上迁移过程。传统研究主要侧重于冻胀过程中液态水迁移,在工程建设中也会考虑防水作用,但却很少考虑气态水迁移影响,进而容易引起工程病害[71]。针对该问题,贺佐跃等[72]通过室内试验发现当考虑气态水迁移成冰作用时,产生的冻胀量与实测值拟合较好,较好地解释了冻胀现象发生的原因。通过进一步开展现场监测与相关室内试验,结合数值模拟等手段明确不同覆盖层下水汽运移机理,为此类问题提出具体防治措施,对于寒旱区工程建设而言十分必要。

5 结 论

综合分析国内外研究,本文回顾了包气带水汽热耦合运移理论的发展历程与研究现状。对于季节性冻土区,土壤冻结后孔隙中水、汽、冰三相共存,冻融作用不仅会引起土壤水、热性质发生改变,而且对于土壤水分相态转化与剖面土壤水分分布影响明显。由于季节性冻土区野外工作复杂性,数值模拟技术逐渐成为研究水汽热耦合运移过程的主要手段。通过构建适宜的耦合模型模拟分析,液态水与气态水运移模式及其驱动力机制逐渐被揭示,并通过定量描述阐明了气态水对于包气带水分运移过程的影响。研究结果表明开展包气带水汽热耦合运移研究不仅符合季节性冻土区实际情况,而且有助于探究土壤水循环过程背后机理。

然而,现有研究大多偏重于理论探索,在实际应用层面取得的成果较少。结合季节性冻土区情况,应围绕生态水文、水灾害等实际问题展开进一步研究:1)聚焦“土壤-植被-大气”系统水循环过程,建立适用于季节性冻土区的包气带水汽热-植被耦合模型,探究土壤水资源生态效应,为植被恢复与生态系统稳定提供科学依据;2)在寒旱区工程建设中考虑气态水的影响,明确覆盖层下水汽运移机理,对建设过程中由水汽运移引起的工程病害提出具体防治措施。

[1] 李小雁,马育军. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报(自然科学版),2016,52(6):731-737.

Li Xiaoyan, Ma Yujun. Advances in Earth’s Critical Zone science and hydropedology[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(6): 731-737. (in Chinese with English abstract)

[2] 邹慧,高光耀,傅伯杰. 干旱半干旱草地生态系统与土壤水分关系研究进展[J]. 生态学报,2016,36(11):3127-3136.

Zou Hui, Gao Guangyao, Fu Bojie. The relationship between grassland ecosystem and soil water in arid and semi-arid areas: A review[J]. Acta Ecologica Sinica, 2016, 36(11): 3127-3136. (in Chinese with English abstract)

[3] 李小雁. 干旱地区土壤-植被-水文耦合、响应与适应机制[J]. 中国科学(地球科学),2011,41(12):1721-1730.

Li Xiaoyan. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions[J]. Scientia Sinica (Terrae), 2011, 41(12): 1721-1730. (in Chinese with English abstract)

[4] 李娜,任理,唐泽军. 降雨入渗条件下厚包气带土壤水流通量的模拟与分析[J]. 农业工程学报,2013,29(12):94-100.

Li Na, Ren Li, Tang Zejun. Modeling and analyzing water flow in a thick unsaturated zone during precipitation and infiltration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 94-100. (in Chinese with English abstract)

[5] Bittelli M, Ventura F, Campbell G S, et al. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils[J]. Journal of Hydrology, 2008, 362: 191-205.

[6] Wang X X. Vapor flow resistance of dry soil layer to soil water evaporation in arid environment: An overview[J]. Water, 2015, 7(12): 4552-4574.

[7] 周宏. 干旱区包气带土壤水分运移能量关系及驱动力研究评述[J]. 生态学报,2019,39(18):6586-6597.

Zhou Hong. Review of studies on the relationship between soil water movement and energy and their driving forces in the vadose zone of arid regions[J]. Acta Ecologica Sinica, 2019, 39(18): 6586-6597. (in Chinese with English abstract)

[8] 李胜龙,肖波,孙福海. 黄土高原干旱半干旱区生物结皮覆盖土壤水汽吸附与凝结特征[J]. 农业工程学报,2020,36(15):111-119.

Li Shenglong, Xiao Bo, Sun Fuhai. Characteristics of water vapor sorption and condensation in biocrusts covered surface soil in arid and semiarid areas of the Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 111-119. (in Chinese with English abstract)

[9] 叶仁政,常娟. 中国冻土地下水研究现状与进展综述[J]. 冰川冻土,2019,41(1):183-196.

Ye Renzhen, Chang Juan. Study of groundwater in permafrost regions of China: status and process[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 183-196. (in Chinese with English abstract)

[10] Hayashi M. The cold vadose zone: Hydrological and ecological significance of frozen-soil processes[J]. Vadose Zone Journal, 2013, 12: 37-44.

[11] 李晶,何志斌,杜军,等. 冬灌对冻融期干旱区荒漠绿洲农田土壤水热状况的影响[J]. 农业工程学报,2018,34(11):105-112.

Li Jing, He Zhibin, Du Jun, et al. Effects of winter irrigation on soil hydro-thermal features in desert oasis farmland in arid area during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 105-112. (in Chinese with English abstract)

[12] 刘小燕,刘巧玲,刘廷玺,等. 科尔沁草甸地冻融期土壤水热盐动态迁移规律[J]. 水科学进展,2015,26(3):331-339.

Liu Xiaoyan, Liu Qiaoling, Liu Tingxi, et al. Rules of the dynamic water-heat-salt transfer in soil of Horqin meadow during freezing and thawing period[J]. Advances in Water Science, 2015, 26(3): 331-339. (in Chinese with English abstract)

[13] Yu L Y, Zeng Y J, Wen J, et al. Liquid-vapor-air flow in the frozen soil[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 7393-7415.

[14] Philip J R, de Vries D A. Moisture movement in porous materials under temperature gradient[J]. Transactions American Geophysical Union, 1957, 38(2): 222-232.

[15] Hanks R J, Garder H R, Faikbourn M L. Evaporation of water from soils as influenced by drying with wind or radiation[J]. Soil Science Society of America Journal, 1967, 31(5): 593-599.

[16] Milly P C D. A linear analysis of thermal effects on evaporation from soil[J]. Water Resources Research, 1984, 20(8): 1075-1085.

[17] Cass A, Campbell G S, Jones T L. Enhancement of thermal water vapor diffusion in soil[J]. Soil Science Society of America Journal, 1984, 48: 25-32.

[18] Cahill A T, Parlange M B. On water vapor transport in field soils[J]. Water Resources Research, 1998, 34(4): 731-739.

[19] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323.

[20] Cary J W, Mayland H F. Salt and water movement in unsaturated frozen soil[J]. Soil Science Society of America Journal, 1972, 36(4): 549-555.

[21] Guymon G L, Luthin J N. A coupled heat and moisture transport model for arctic soils[J]. Water Resources Research, 1974, 10(5): 995-1001.

[22] Fuchs M, Campbell G S, Papendick R I. An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J]. Soil Science Society of America Journal, 1978, 42(3): 379-385.

[23] Nakano Y, Tice A, Oliphant J. Transport of water in frozen soil: III. Experiments on the effects of ice content[J]. Advances in Water Resources, 1984, 7: 28-34.

[24] Eigenbrod K D, Kennepohl G J A. Moisture accumulation and pore water pressures at base of pavements[J]. Transportation Research Record, 1996, 1546(1): 151-161.

[25] 曹文炳,万力,陈康,等. 季节冻土对包气带水分迁移的影响[J]. 水文地质工程地质,2014,41(6):1-5.

Cao Wenbing, Wan Li, Chen Kang, et al. Influence of seasonal frozen soil on moisture migration in the aerated zone[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 1-5. (in Chinese with English abstract)

[26] Hansson K, Šimůnek J, Mizoguchi M, et al. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications[J]. Vadose Zone Journal, 2004, 3(2): 693-704.

[27] Anderson D M, Tice A. Predicting unfrozen water contents in frozen soils from surface area measurements[J]. Highway Research Record, 1972, 393: 12-18.

[28] Mckenzie J M, Voss C I, Siegel D I. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advances in Water Resources, 2007, 30(4): 966-983.

[29] Ge S M, Mckenzie J, Voss C, et al. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation[J]. Geophysical Research Letters, 2011, 38(14): L14402.

[30] Teng J D, Kou J Y, Yan X D, et al. Parameterization of soil freezing characteristic curve for unsaturated soils[J]. Cold Regions Science and Technology, 2020, 170: 102928.

[31] Parkin G, von Bertoldi A, McCoy A J. Effect of tillage on soil water content and temperature under freeze-thaw conditions[J]. Vadose Zone Journal, 2013: 12(1): 1-9.

[32] Spaans E J A, Baker J M. The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60: 13-19.

[33] Brooks R H, Corey A T. Hydraulic properties of porous media[J]. Hydrology, 1964, (3): 27-28.

[34] Gardner W R, Hillel D, Benyamini Y. Post-irrigation movement of soil water: 2. Simultaneous redistribution and evaporation[J]. Water Resources Research, 1970, 6(4): 1148-1153.

[35] van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

[36] 汤瑞,周国庆,王建州,等. 冻土水力传导系数的理论模型研究[J]. 农业工程学报,2019,35(4):138-144.

Tang Rui, Zhou Guoqing, Wang Jianzhou, et al. Research on theoretical model for hydraulic conductivity in frozen soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 138-144. (in Chinese with English abstract)

[37] Sheshukov A Y, Nieber J L. One-dimensional freezing of nonheaving unsaturated soils: Model formulation and similarity solution[J]. Water Resources Research, 2011, 47(11): W11519.

[38] Dall'Amico M, Endrizzi S, Gruber S, et al. A robust and energy-conserving model of freezing variably-saturated soil[J]. The Cryosphere, 2011, 5(2): 469-484.

[39] Lebeau M, Konrad J. An extension of the capillary and thin film flow model for predicting the hydraulic conductivity of air-free frozen porous media[J]. Water Resources Research, 2012; 48(7): W07523.

[40] Nixon J F D. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 2011, 28(6): 843-859.

[41] Kurylyk B L, Watanabe K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60: 160-177.

[42] Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4): 548-555.

[43] Lundin L C. Hydraulic properties in an operational model of frozen soil[J]. Journal of Hydrology, 1990, 118(1/2/3/4): 289-310.

[44] Zhao Y, Nishimura T, Hill R, et al. Determining hydraulic conductivity for air-filled porosity in an unsaturated frozen soil by the multistep outflow method[J]. Vadose Zone Journal, 2013, 12(1): 1-10.

[45] Sun Y R, Cheng Q, Xue X Z, et al. Determining in-situ soil freeze-thaw cycle dynamics using an access tube-based dielectric sensor[J]. Geoderma, 2012, 189/190: 321-327.

[46] Spaans E J A, Baker J M. Examining the use of time domain reflectometry for measuring liquid water content in frozen soils[J]. Water Resources Research, 1995, 31(12), 2917-2925.

[47] Kozlowski T. Some factors affecting supercooling and the equilibrium freezing point in soil-water systems[J]. Cold Regions Science and Technology, 2009, 59(1): 25-33.

[48] Cheng Q, Sun Y R, Xue X Z, et al. In situ determination of soil freezing characteristics for estimation of soil moisture characteristics using a dielectric tube sensor[J]. Soil Science Society of America Journal, 2014, 78(1): 133-138.

[49] Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41.

[50] Bao H Y, Koike T, Yang K, et al. Development of an enthalpy-based frozen soil model and its validation in a cold region in China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5259-5280.

[51] 张在勇,王文科,陆彦玮,等. 改进型有限分析法模拟包气带土壤水分运移[J]. 农业工程学报,2021,37(18):55-61.

Zhang Zaiyong, Wang Wenke, Lu Yanwei, et al. Improved finite analytic method to simulate soil water movement in vadose zones[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 55-61. (in Chinese with English abstract)

[52] 吴晓玲,向小华,王船海,等. 季节冻土区融雪冻土水热耦合模型研究[J]. 水文,2012,32(5):12-16.

Wu Xiaoling, Xiang Xiaohua, Wang Chuanhai, et al. Numerical modeling for coupled snowmelt and frozen soil in seasonally frozen soil region[J]. Journal of China Hydrology, 2012, 32(5): 12-16. (in Chinese with English abstract)

[53] 郑策,高万德,陈云飞,等. 毛乌素沙地冻融期气态水迁移机理及影响因素[J]. 水科学进展,2022,33(2):227-239.

Zheng Ce, Gao Wande, Chen Yunfei, et al. Vapor transfer mechanism and its influence factors during the freeze-thaw periods in Mu Us Sandy Land[J]. Advances in Water Science, 2022, 33(2): 227-239. (in Chinese with English abstract)

[54] 王国帅,史海滨,李仙岳,等. 基于HYDRUS-1D 模型的荒漠绿洲水盐运移模拟与评估[J]. 农业工程学报,2021,37(8):87-98.

Wang Guoshuai, Shi Haibin, Li Xianyue, et al. Simulation and evaluation of soil water and salt transport in desert oases of Hetao Irrigation District using HYDRUS-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 87-98. (in Chinese with English abstract)

[55] 韩冬梅,周田田,马英,等. 干旱区重度和轻度盐碱地包气带水分运移规律[J]. 农业工程学报,2018,34(18):152-159.

Han Dongmei, Zhou Tiantian, Ma Ying, et al. Water movement law through unsaturated zone in severe and mild saline-alkali fields in arid region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 152-159. (in Chinese with English abstract)

[56] Saito H, Šimůnek J, Mohanty B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, 5(2): 784-800.

[57] Zheng C, Šimůnek J, Zhao Y, et al. Development of the Hydrus-1D freezing module and its application in simulating the coupled movement of water, vapor, and heat[J]. Journal of Hydrology, 2021, 598: 126250.

[58] 曾亦键,万力,苏中波,等. 浅层包气带水汽昼夜运移规律及其数值模拟研究[J]. 地学前缘,2008,15(5):330-343.

Zeng Yijian, Wan Li, Su Zhongbo, et al. The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis[J]. Earth Science Frontiers, 2008, 15(5): 330-343. (in Chinese with English abstract)

[59] Zhou H, Zhao W Z. Evolution of soil-water states in the vadose zone of a desert soil after an extreme rainfall event and its impact on the ecosystem[J]. Hydrogeology Journal, 2021, 29: 2127-2147.

[60] Deb S K, Shukla M K, Sharma P, et al. Coupled liquid water, water vapor, and heat transport simulations in an unsaturated zone of a sandy loam field[J]. Soil Science, 2011, 176(8): 387-398.

[61] 张明礼,温智,董建华,等. 多年冻土活动层浅层包气带水-汽-热耦合运移规律[J]. 岩土力学,2018,39(2):561-570.

Zhang Mingli, Wen Zhi, Dong Jianhua, et al. Coupled water-vapor-heat transport in shallow unsaturated zone of active layer in permafrost regions[J]. Rock and Soil Mechanics, 2018, 39(2): 561-570. (in Chinese with English abstract)

[62] Du C Y, Yu J J, Wang P, et al. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China[J]. Journal of Hydrology, 2017, 558: 592-606.

[63] Xiang L, Yu Z B, Chen L, et al. Evaluating coupled water, vapor, and heat flows and their influence on moisture dynamics in arid regions[J]. Journal of Hydrologic Engineering, 2012, 17(4): 565-577.

[64] Zhang S, Teng J D, He Z Y, et al. Importance of vapor flow in unsaturated freezing soil: A numerical study[J]. Cold Regions Science and Technology, 2016, 126: 1-9.

[65] 杨建锋,万书勤,邓伟,等. 地下水浅埋条件下包气带水和溶质运移数值模拟研究评述[J]. 农业工程学报,2005,21(6):158-165.

Yang Jianfeng, Wan Shuqin, Deng Wei, et al. Review of numerical simulation of soil water flow and solute transport in the presence of water table[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(6): 158-165. (in Chinese with English abstract)

[66] 裴艳武,黄来明,邵明安,等. 毛乌素沙地不同地下水位埋深下土壤水补给特征及影响因素[J]. 农业工程学报,2021,37(12):108-116.

Pei Yanwu, Huang Laiming, Shao Ming'an, et al. Characteristics and their influencing factors of water recharge under different groundwater levels in the Mu Us Sandy Land of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 108-116. (in Chinese with English abstract)

[67] Huang J T, Zhou Y X, Wenninger J, et al. How water use of Salix psammophila bush depends on groundwater depth in a semi-desert area[J]. Environmental Earth Sciences, 2016, 75(7): 556-568.

[68] 万力,曹文炳,周训,等. 包气带中温度变化对水分分布影响的实验研究[J]. 水文地质工程地质,2004,31(3):25-28.

Wan Li, Cao Wenbing, Zhou Xun, et al. A testing study on the effect of the change of temperature on the occurrence of water content in unsaturated zone[J]. Hydrogeology & Engineering Geology, 2004, 31(3): 25-28. (in Chinese with English abstract)

[69] 司建华,冯起,鱼腾飞,等. 植物夜间蒸腾及其生态水文效应研究进展[J]. 水科学进展,2014,25(6):907-914.

Si Jianhua, Feng Qi, Yu Tengfei, et al. Research advances in nighttime transpiration and its eco-hydrological implications[J]. Advances in Water Science, 2014, 25(6): 907-914. (in Chinese with English abstract)

[70] 李强,姚仰平,韩黎明,等. 土体的“锅盖效应”[J]. 工业建筑,2014,44(2):69-71.

Li Qiang, Yao Yangping, Han Liming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2): 69-71. (in Chinese with English abstract)

[71] He Z Y, Teng J D, Yang Z J, et al. An analysis of vapour transfer in unsaturated freezing soils[J]. Cold Region Science and Technology, 2020, 169: 102914.

[72] 贺佐跃,张升. 气态水诱发高速铁路路基冻胀的潜在机理研究[J]. 铁道学报,2020,42(4):125-130.

He Zuoyue, Zhang Sheng. Potential mechanism of vapor induced frost heave in high-speed railway embankments[J]. Journal of the China Railway Society, 2020, 42(4): 125-130. (in Chinese with English abstract)

Review of coupled water, vapor, and heat transport of the vadose zone in the seasonal frozen soil region

Zheng Ce, Gao Wande, Chen Yunfei, Lu Yudong, Liu Xiuhua※

(1.,,710064,; 2.,,710064,)

Seasonally frozen soil regions refer to those areas where soil is frozen for 15 days or more per year. More than half of land surface is occupied with the seasonal snow cover in China. The freeze-thaw process can significantly change the soil properties, as well as the water and heat transferring in the vadose zone. Among them, temperature and water vapor have posed a significant impact on the soil moisture, due to the soil subjected to the dry condition in most of the seasonally frozen regions (belonging to the arid and semi-arid areas). It is gradually recognized as the significant effect of vapor flow on the soil water movement for both freezing and non-freezing periods over the past several decades. It is a high demand to couple the water, vapor, and heat transport suitable for the actual conditions of seasonally frozen soil regions, in order to reveal the influencing mechanism of soil hydrological cycle. The coupled theory of water, vapor, and heat transport was firstly proposed by Philip and de Vries. The total soil water flux was then divided into four components, including the liquid water flux and water vapor flux driven by water potential and temperature gradients, respectively. Since then, extensive researches were also carried out to continuously improve on the coupled transport. Once the soil was frozen, the liquid water, vapor, and ice were coexisted in the unsaturated zone. Two aspects were also observed in the influence of phase changes between liquid water and ice on the coupled water, vapor, and heat transport. Several hydraulic parameters were calculated to determine the hydrological cycle, such as the soil freezing curve, and hydraulic conductivity for the liquid water. The spatial and temporal distributions of soil moisture in the vadose zone were dominated by the seasonally freeze-thaw process as well. The contents of unfrozen water and ice also changed significantly with the variations of soil temperature. Numerical simulation was gradually utilized in this research field with the ever-increasing computational capacity and simulation accuracy. Great challenges were still remained on the coupled numerical model, due to the influence from the ice-water phase change. An appropriate coupling model was crucial to the numerical simulation via the reasonable simplification. The underlying mechanism of coupled water and vapor flow was gradually revealed from the simulation using different models. Specifically, the vapor flux was one of the most important components in the soil water movement, usually accounting for 10%-30% of the total water flux. Furthermore, the vapor flux was depended mainly on the relatively low soil moisture and large temperature gradient in the shallow layer. The vapor flow was much more significant during the freezing period, due mainly to the impeded flow of liquid water in the presence of ice. Consequently, some research directions that needed to be strengthened in this field were proposed to deepen the theoretical fundamentals and the practical tasks in the seasonal frozen soil areas. Firstly, the condensation and accumulation of water vapor can greatly contribute to the vegetation under soil drought and freezing stress. It is of great significance to maintain the desert vegetation ecosystem, where the soil water is critical to the vegetation growth in the fragile ecological areas. The vegetation module can be combined with the coupled model water, vapor, and heat transferring. Further studies can be implemented to explore the specific impact of liquid water and vapor on the surface vegetation in seasonal frozen region. Secondly, the coupled transport of liquid water and vapor can also impact many engineering construction activities as well, such as the frost heave in the railway embankments that caused by the continuous liquid water and vapor transport from the deep soil layer. Finally, in-situ monitoring and simulation can be strengthened to reveal the detailed process of liquid and vapor transport below the surface impermeable layer. The finding can also provide the scientific basis for the disaster prevention and control during freeze-thaw process.

water; heat; numerical analysis; vadose zone; vapor transport; hydrological cycle; seasonal frozen soil region

10.11975/j.issn.1002-6819.2022.24.012

S152.7

A

1002-6819(2022)-24-0110-08

郑策,高万德,陈云飞,等. 季节性冻土区包气带水汽热耦合运移研究进展[J]. 农业工程学报,2022,38(24):110-117.doi:10.11975/j.issn.1002-6819.2022.24.012 http://www.tcsae.org

Zheng Ce, Gao Wande, Chen Yunfei, et al. Review of coupled water, vapor, and heat transport of the vadose zone in the seasonal frozen soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 110-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.24.012 http://www.tcsae.org

2022-08-21

2022-10-10

国家自然科学基金资助项目(42202279,41877179);中国博士后科学基金(2022M720536)

郑策,博士,讲师,研究方向为寒旱区土壤水文与生态水文。Email:zhengce@chd.edu.cn

刘秀花,博士,教授,研究方向为旱区水生态与水安全。Email:Liuxh68@chd.edu.cn

猜你喜欢
包气液态水气态
基于氯离子示踪法深厚包气带地区地下水补给特征
层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究
基于微波辐射计的张掖地区水汽、液态水变化特征分析
Ka/Ku双波段毫米波雷达功率谱数据反演液态水含量方法研究
ISO/TS 19880-1:2016气态氢加注站第1部分一般要求标准解读
气态燃料发动机相关发明专利(三)
零下温度的液态水
火星上发现第一个液态水湖
气态燃料发动机相关发明专利
对于如何提高地下水包气带垂向渗透系数测定的准确率的研究