活性炭吸附饮用水中三卤甲烷的实验研究

2022-07-25 13:52贺斯佳张硕孙昊郭庆龄翁琦辉杨岳平
浙江大学学报(理学版) 2022年4期
关键词:滤芯去除率活性炭

贺斯佳,张硕,孙昊,郭庆龄,翁琦辉,杨岳平

(浙江大学环境与资源学院,浙江 杭州 310058)

三卤甲烷(THMs)是一类主要的氯消毒副产物,包括三氯甲烷(CHCl3,TCM)、二氯一溴甲烷(CHCl2Br,DCBM)、一 氯 二 溴 甲 苯(CHClBr2,DBCM)和三溴甲烷(CHBr3,TBM)[1]。在饮用水消毒过程中,水中的有机物与含氯消毒剂反应生成THMs[2],若水中存在溴则产生溴代甲烷[3]。饮用水中THMs的浓度与氯消毒剂呈线性或对数关系[4]。THMs通过饮水途径暴露,对人体存在一定的健康风险。BEANE等[5]研究发现,三氯自由基在高水平暴露下与膀胱癌存在中度关联性。周国宏等[6]对部分水厂产水和其中部分水厂末梢水中的THMs进行健康风险评价,发现其健康风险依次为CHCl3>CHCl2Br>CHClBr2>CHBr3。

通常,控制水中THMs的方法有更换消毒剂[7-8]、去除 THMs前体物[9-11]、优化或替代氯消毒工艺[12-13]等,从而达到去除 THMs的目的[14-16]。控制饮用水中THMs的工艺有高级氧化[17]、膜分离[18]、活性炭吸附[19]、曝气吹脱[20]等。其中,高级氧化和膜分离工艺的处理成本较高,而活性炭吸附工艺,其核心原料活性炭易获取,且具有无毒、化学性质稳定、耐酸碱性以及耐高温等特点,逐渐成为饮用水去除THMs的常用方法。活性炭具有优良的吸附性能和高性价比,被广泛用于废水废气治理、饮用水净化等。张娇[21]研究了多种活性炭对饮用水中THMs的吸附情况,结果表明,椰壳活性炭和果壳活性炭的吸附性能较好。甘轶群[22]探究了三级滤芯(PP棉—颗粒活性炭—压缩活性炭)活性炭净水器对卤代甲烷的去除效果,结果表明,颗粒活性炭滤芯的去除率最高,该净水器串联使用时的去除率≥81%。王立伟[23]发现,经过三级滤芯活性炭净水器后,水中7种卤乙酸类物质的去除率为16%~44%,而由于THMs的水溶性相对较小,其去除率高于卤乙酸。

本文针对市政供水终端的THMs,筛选4种常用的活性炭进行吸附实验,根据《生活饮用水卫生标准》(GB5749—2006)设立 THMs的浓度限值。通过静态吸附实验筛选出较优活性炭,进一步探究其对THMs的吸附热力学模型,及不同条件对其静态吸附和动态吸附实验的影响,并给出最优条件,为解决饮用水中氯消毒副产物问题和家用净水器的滤芯设计提供理论依据。

1 材料和方法

1.1 材 料

自来水的主要指标为溶解性总固体101.9 mg·L-1,总硬度(以 CaCO3计)37 mg·L-1,pH 7.21,浊度0.45 NTU,余氯0.02 mg·L-1,CODMn0.87 mg·L-1。椰壳活性炭ACL1和果壳活性炭ACL2购自唐山联合炭业科技有限公司,椰壳活性炭ACY和木质活性炭ACM购自福建鑫森炭业有限公司。4种活性炭的理化性质见表1。

表1 4种活性炭的物理性质Table 1 The physical properties of four activated carbons

1.2 试剂与仪器

THMs标准液 :CHCl3(1000 μg·mL-1)、CHBr2Cl(455 μg·mL-1)、CHBrCl2(387 μg·mL-1)、CHBr3(1000 μg·mL-1);甲醇 ,CHCl3,CHCl2Br,CHClBr2,CHBr3。

Agilent 7820气相色谱-ECD,HP-5,30 m×0.320 mm×0.25 μm毛细管柱,购自安捷伦科技有限公司;DHG-9053A电热恒温干燥箱,购自上海精宏实验设备有限公司;TAS-990石墨炉原子吸收分光光度仪、GF-990石墨炉原子吸收分光光度仪,购自北京普析通用仪器有限责任公司;UV2102-PC紫外分光光度计、JW-BK132F静态氮吸附仪,购自精微高博科学技术有限公司。

1.3 实验方法

1.3.1 静态吸附实验

在相同条件下,用4种活性炭ACL1,ACL2,ACY和ACM分别对THMs进行吸附实验。

(1)取若干三角烧瓶,加入50 mL THMs溶液和0.10 g活性炭(平均粒径为10~25目),密封后,于25 ℃,165 r·min-1恒温振荡吸附。THMs初始浓度设置为 200 μg·L-1(2倍国家标准限值),吸附总时长设为8 h。间隔一定时间检测溶液中THMs浓度,记录平衡时间,计算静态吸附速率。

(2)取若干三角烧瓶,分别加入0.02,0.04,0.06,0.08和0.10 g活性炭(平均粒径为10~25目),再加入 50 mL THMs溶液,于 25 ℃,165 r·min-1恒温振荡吸附,吸附总时长设为12 h。间隔一定时间检测溶液中THMs浓度,采用等温吸附方程及其拟合曲线研究其理论吸附过程。

1.3.2 活性炭对THMs的吸附

取50 mL含THMs溶液的水样,加入0.10 g椰壳活性炭ACL1(平均粒径为10~25目),于25℃,165 r·min-1恒温振荡吸附,吸附总时长设为12 h。间隔一定时间检测溶液中THMs浓度,分别计算活性炭的吸附量和吸附率。

1.3.3 实验条件对活性炭吸附THMs的影响

1.3.3.1 初始浓度

取50 mL含THMs溶液的水样,加入0.10 g ACL1(平均粒径为10~25目),于25℃,165 r·m-1恒温振荡吸附。THMs初始浓度分别设为50,100,200 μg·L-1,吸附总时长设为8 h。间隔一定时间检测溶液中THMs的浓度。本文所设置THMs进水浓度较高,最高达2倍国家标准限值,若在此情况下仍有较好的出水效果,则对实际市政供水终端中THMs的去除效果仍较好,由此可为活性炭吸附滤芯的设计提供理论依据。

1.3.3.2 温度

取50 mL含THMs溶液的水样,加入0.10 g ACL1(平均粒径为 10~25目),分别于 27,30,33,36 ℃条件下,THMs的初始浓度为 200 μg·L-1,165 r·m-1恒温振荡吸附,吸附时间总长设为8 h。间隔一定时间检测溶液中THMs浓度。

1.3.4 活性炭对饮用水中THMs的动态穿透实验

以市售10寸(33.33 cm)滤芯为原型,等比例缩小自制活性炭吸附装置。如图1所示,装置由三级滤芯活性炭吸附柱串联而成,吸附柱为有机玻璃,尺寸为7 cm×φ2 cm。将用蒸馏水清洗后的活性炭填入吸附柱,连接蠕动泵,调节转速控制进水流量,待水流充满吸附装置后开始计时,收集不同时间点的过柱后水样,并检测THMs的浓度。其中,进水流速设为78 mL·min-1,炭床高度为14 cm。

图1 活性炭吸附装置Fig.1 Activated carbon adsorption setup

1.4 检测方法

采用毛细管柱气相色谱法检测THMs浓度,具体如下:

(1)水样预处理及气体取样。取5 mL水样,经滤头过滤后置于20 mL顶空瓶,密封后在水浴锅中40℃恒温水浴1 h至平衡(应在24 h内完成检测)。用气密型微量注射器准确吸取50 μL顶空瓶上部气体,迅速进样。

(2)气相色谱检测。设置进样口温度为200℃,检测器温度为280℃。将柱温升至45℃保持3 min,再以2℃·min-1的速度升温至70℃,保持1 min;载气流速为 1 mL·min-1,分流比为 2∶1。

(3)标准曲线绘制。依次用甲醇和纯水稀释THMs标准品,得到THMs标准液浓度梯度。再将各浓度的标准液进行水样预处理及气体取样,然后检测其浓度。用外标法绘制标准曲线。

2 结果及分析

2.1 活性炭对THMs的静态吸附

2.1.1 吸附速度及吸附平衡时间

图2为4种活性炭对THMs的单位吸附量随时间的变化曲线。由图2可知,4种THMs在1h内被快速吸附,4h后接近吸附平衡。1h内,ACL1对CHCl3,CHCl2Br,CHClBr2,CHBr3的单位吸附量q分别为47.71,52.93,91.43和90.47μg·g-1,优于ACY,ACL1和ACM。4h后,除ACM对CHCl2Br的平衡吸附量略低于其他3种活性炭(较ACL1低4.90%)外,4种活性炭对THMs的平衡吸附量相近,差值小于4.10%。其中,ACL1对CHCl3,CHCl2Br,CHClBr2,CHBr3的平衡吸附量分别为56.16,58.35,97.62,98.78μg·g-1。故选用ACL1进行后续研究。

图2 4种活性炭对THMs的吸附量随时间的变化关系Fig.2 Changes of THMs adsorption by four activated carbons with time

2.1.2 活性炭对THMs的吸附效果

为进一步探究ACL1对THMs的吸附效果,采用吸附热力学模型进行拟合。

2.1.2.1 Langmuir等温吸附方程

在固-液吸附过程中,THMs分子以单分子层形式吸附:

其中,ce为样品中 THMs的平衡浓度(μg·L-1),qe为平衡时单位活性炭的吸附量(μg·g-1),b为Langmuir吸附常数(L·μg-1),qm为单位活性炭最大吸附量(μg·g-1)。

2.1.2.2 Freundlich等温吸附方程

在固-液吸附过程中,活性炭表面存在非均匀吸附:

其中,KF为 Freundlich吸附常数(μg·g-1),n为Freundlich经验常数。

吸附热力学模型的拟合参数见表2,Langmuir等温吸附线和Freundlich等温吸附线分别见图3和图4。可知,ACL1对THMs的吸附更符合Freundlich模型,其判定系数R2更接近于1,故相关性更优,吸附方式接近于非均匀吸附,对小分子有机物的吸附效果更好。

表2 ACL1对THMs的吸附热力学模型Table 2 Isothermal adsorption equation for THMs adsorbed on ACL1

图3 ACL1对THMs的Langmuir等温吸附线Fig.3 Langmuir isotherm for THMs adsorbed on ACL1

图4 ACL1对THMs的Freundlich等温吸附线Fig.4 Freundlich isotherm for THMs adsorbed on ACL1

由图5可知,ACL1对THMs的静态吸附效果依次 为 CHBr3>CHClBr2>CHCl2Br>CHCl3。 随着THMs中溴原子的增加,等量吸附热升高,ACL1对THMs的吸附量增加[24]。

图5 ACL1对THMs的静态吸附效果Fig.5 Static adsorption effect of ACL1to THMs

吸附前 1 h,ACL1对 CHCl3,CHCl2Br,CHClBr2,CHBr3的平均吸附速率依次为 0.80,0.88,1.48 和1.51 μg·(g·min)-1,接近吸附平衡,4 h 后达到平衡,此时的瞬时吸附速率小于 0.02 μg·(g·min)-1。已有研究表明,当 THMs的初始浓度为 200 μg·L-1时,活性炭对CHBrCl2的去除率高于CHCl3,去除率分别为 87.66% 和 79.67%,平衡时间约为 3 h[25],与本实验结果基本相符。实验结果验证了活性炭吸附容量与THMs中溴原子间的关系。

2.1.3 实验条件对活性炭吸附THMs的影响

图6和图7展示的分别为初始浓度和温度对ACL1吸附THMs的影响。

图6 不同初始浓度下THMs去除率随时间的变化Fig.6 The removal rate of THMs varies with time at different initial concentrations

图7 THMs去除率随温度的变化Fig.7 The removal rate of THMs varies with temperature

由图6可知,THMs初始浓度越大,活性炭吸附速率越快,4 h后基本达到吸附平衡。当THMs初始浓度为 50,100 μg·L-1时,ACL1对 4种 THMs的去除率均为 100%;当 THMs初始浓度为 200 μg·L-1时,ACL1对 CHCl3,CHCl2Br,CHClBr2和 CHBr3的去除率分别为93.89%,96.93%,98.46%和100%,去除率高于90%,近乎完全去除,出水THMs浓度符合《生活饮用水卫生标准》。

由图7可知,在室温(27℃)条件下,ACL1对THMs的去除率均大于93%,温度升至36℃时,ACL1对 CHCl3,CHCl2Br,CHClBr2和 CHBr3的去除率分别上升了4.60%,2.58%,1.07%和0,增幅较小,温度对活性炭吸附THMs的影响较小。

2.2 动态吸附实验

文献[26]对城市饮用水中THMs的分布进行了统计,得到THMs中CHCl3占比最大,约为41%。故将CHCl3作为动态吸附目标物,研究不同实验条件对活性炭动态吸附的影响,进水THMs浓度设为200 μg·L-1,主要研究 THMs的出水浓度与进水浓度比(c/c0)≤0.5时的吸附情况。

图8为不同实验条件下ACL1吸附CHCl3的动态曲线。由图8(a)可知,当进水流速分别为117,78,39 mL·min-1时,c/c0达 0.5所需时长分别为 6.6,8和 10 h,即当进水流速低于 78 mL·min-1时,ACL1对 CHCl3的吸附效果相近;由图8(b)可知,当THMs的初始浓度为 200 μg·L-1时,c/c0达 0.5所需时长为 8.2h,而当初始浓度为 100和 50 μg·L-1时,c/c0达0.5所需时长均大于10 h,即当进水THMs浓度小于 200 μg·L-1时,ACL1对 CHCl3的去除效果较好;由图8(c)可知,当炭床高度为7 cm时,c/c0达0.5所需时长为5.2 h,而当炭床高度为14和21 cm时,c/c0达0.5所需时长均大于10 h,即炭床高度为7 cm时,ACL1对CHCl3的去除效果较好。

图8 不同实验条件下ACL1对CHCl3的动态吸附曲线Fig.8 Dynamic adsorption curve of ACL1adsorption CHCl3under different conditions

设进水流速为78 mL·min-1,炭床高度为7 cm,THMs 初始浓度为 200 μg·L-1,研究ACL1对THMs的动态吸附情况,结果见图9。可见当THMs的初始浓度为 200 μg·L-1时,c/c0的增速排序 依 次 为 CHCl3>CHCl2Br>CHClBr2>CHBr3,即ACL1对CHBr3的吸附效果最好。当c/c0=0.8时,到达耗竭点,且4种THMs到达耗竭点的需时接近,均为20 h左右。当c/c0≤0.5时,出水THMs浓度符合标准,ACL1对 CHCl3,CHCl2Br,CHClBr2和 CHBr3的最大吸附时长分别为8.1,15.3,15.6和16.5 h。

图9 ACL1对THMs的动态吸附曲线Fig.9 Dynamic adsorption curve of ACL1 adsorption THMs

3 总结与讨论

(1)在4种活性炭中,ACL1对THMs的吸附效果最好,其对CHCl3,CHCl2Br,CHClBr2和 CHBr3的平衡吸附量分别为 56.16,58.35,97.62,98.78 μg·g-1,活性炭吸附容量随Br原子数增加呈增加趋势,这是由于Br原子取代Cl原子提高了等量吸附热,使得吸附量增加。

(2)ACL1对THMs的吸附行为较符合Freundlich模型(R2>0.955)。

(3)静态吸附实验结果表明,前1 h ACL1对THMs具有较高的吸附效率,4 h后达平衡状态。当温度为27~36℃时,温度变化对吸附效应影响较小。初始浓度主要影响活性炭的吸附速度,当THMs的初始浓度为 200 μg·L-1时,ACL1对 4 种THMs的去除率均大于90%。

(4)动态吸附实验结果表明,进水流速越大、THMs初始浓度越高、炭床高度越小,c/c0增加越快;ACL1对CHBr3的吸附效果最好,与静态吸附实验结果相符。4种THMs到达耗竭点的需时接近,均为20 h左右。

猜你喜欢
滤芯去除率活性炭
A2/O工艺处理污水的效果分析
活性炭微波辐射再生研究
混凝沉淀处理生活污水的实验研究
新型酒用活性炭在配制酒中的应用研究
颗粒和蜂窝状废弃活性炭再生方法的探究
不换滤芯,小心净水器变“脏水器”
为什么净水器一定要更换滤芯
巧制滤芯提取器解决粉尘困扰
活性炭也有“保质期”
固安县华康过滤净化设备有限公司