致密砂岩储层中黏土矿物发育特征及其生长机理研究进展

2024-01-04 02:58蔡来星杨田田景春易娟子任启强
沉积学报 2023年6期
关键词:伊利石高岭石绿泥石

蔡来星,杨田,田景春,易娟子,任启强

1.成都理工大学沉积地质研究院,成都 610059

2.油气藏地质及开发工程国家重点实验室(成都理工大学),成都 610059

3.中国石油西南油气田分公司重庆气矿地质研究所,重庆 401120

0 引言

在新理论与新技术的持续推动下,世界范围内的油气工业已逐步由常规延伸至非常规领域[1],尤以美国和中国引领了全球非常规油气的发展[2-3]。相较于起步阶段的页岩油气和发展较为缓慢的煤层气,致密油气成为接替我国常规油气的现实领域[4-5],且目前已进入规模化开发阶段,鄂尔多斯、四川、松辽、准噶尔、渤海湾等含油气盆地相继取得了一系列新发现和新突破[2,4]。

作为烃类运移、聚集的空间场所和勘探开发的主要对象,砂岩始终是致密油气研究的核心和关键,而蕴藏着古环境、古物源、成岩流体等丰富信息的黏土矿物贯穿了沉积、成岩及后期开发的各个阶段。得益于X 射线分析技术的诞生,国外部分学者在20 世纪20 年代率先认识到黏土的特征和本质[6-7],Formation and Occurrence of Clay Minerals[8],Clay Mineralogy[9]等一系列论著奠定了黏土矿物学的发展根基。至1980 年,由国际黏土学会提出的层状黏土矿物的晶体化学分类表引发了全球矿物学家和石油地质学家的普遍关注。近年来,针对砂岩储层中黏土矿物的研究新益求新,典型成果当属国际沉积学家联合会出版的Clay Mineral Cements in Sandstones[10],有关黏土矿物研究的新技术、新方法、新应用和未来研究方向均囊括其中;《中国含油气盆地黏土矿物》[11]一书的出版则开启了黏土矿物在国内油气勘探中研究、应用的新篇章。

广泛分布于含油气盆地之中的黏土矿物不仅是泥页岩的主要矿物组分,也是砂岩储层中最重要的填隙物[12-13],其类型、含量、赋存产状等对砂岩的孔喉结构和储渗性能造成不可避免的负面效应;同时,黏土矿物的发育也影响着油气藏的后期生产动态[14-16]。通常,绿泥石、伊利石、高岭石占据孔隙空间的作用逐步增强[17],并呈搭桥式、薄膜式、分散质点式依次加剧对渗透率的损害[16],但黏土矿物之间的转化、生长机理异常复杂,导致储层的孔渗响应极为多变,而并非前人简而概之的“减孔降渗”[17-18]。例如,作为长石溶蚀的标志产物,高岭石的存在常与优质储层和工业油气层相对应[12,19-20],而过量的高岭石(绝对含量大于7%)会明显降低储层的孔隙度[14],这尚未考虑大气淋滤[21-22]、有机质生烃排酸[23]、地层超压[24-25]、砂泥岩组合关系[26-27]等诸多地质要素影响下的含Al3+流体迁移和富集的影响。成岩早期形成的绿泥石可积极保护原生孔隙已是业内共识[14,28-31],但前人所界定的护孔含量上限却不尽相同,5%、7%、10%均有提及[14,30-31],这主要是受困于各研究区的“一孔之见”和测试数据的笼统对比,可能在岩相框架内的控储规律才较为清晰[32-33]。伊利石呈弯曲片状、发丝状将孔隙、喉道分割成无数微细的束缚孔隙,孔喉迂曲度和渗流阻力显著增加[14,34]。此外,随着精细测试技术的快速发展,有学者指出黏土矿物内部发育大量的纳米级晶间孔隙,其在高岭石、绿泥石、伊利石中的视微孔率分别占41%~64%,47%~51%,66%~77%[14,33-35],成为提高致密砂岩储集能力与渗流能力的重要贡献者,特别是有助于分子直径不足1 nm 的CH4运聚[36]。黏土矿物晶间孔构成了致密砂岩储层的次级孔喉网络,但不同矿物的产状、结构及矿物间转化所引发的孔隙系统重排又加剧了黏土矿物与储层物性的复杂性和多变性。在油气藏开发过程中,黏土矿物因自身特性也容易发生应力敏感、水敏、速敏、酸敏等现象,是进一步造成储层伤害、影响油气产能的重要因素[37-38]。

综上,黏土矿物虽然晶体细微、产状复杂,但分布广泛、类型多样,在储层地质学中颇具见微知著的研究价值,越来越多的学者开始深入解析它们的发育特征、生长机理、转化过程和控储作用[13-15,30,33-35]。在系统整理国内外重要成果的基础上,结合研究过程中获得的数据资料与初步认识,本文尝试从物质来源、岩石组合、温压条件、水—岩作用、物性响应等方面论述黏土矿物的生长机理与成岩成储效应,并归纳当下的分歧矛盾和研究热点,期望为推动该领域的创新发展略尽绵薄之力。

1 黏土矿物的概念、类型与基本特征

黏土矿物(clay mineral)是地球表层系统中含量最丰富的矿物,是构成泥质岩和各类碎屑岩填隙物的主要组分[12,32],一般是指黏土或黏土岩中晶粒小于2 µm的含水铝硅酸盐类矿物[11,39]。在化学成分上,黏土矿物中除了Al3+、Si4+阳离子外,还含有K、Na、Mg、Fe等碱金属、碱土金属和过渡金属元素,水的存在形式则分为孔隙水、吸附水、层间水和结构水[11,40];从晶体结构来讲,黏土矿物包括非晶质和结晶质两类,后者由硅氧四面体和铝氧八面体在垂直层面方向上按一定比例延展成(链)层状,主要包括高岭石族矿物(1∶1 型)、水云母族矿物(2∶1 型)、绿泥石族矿物(2∶1∶1型)[11,41],常见的有蒙脱石、高岭石、绿泥石、伊利石以及它们的混层黏土,此外还包括地开石、蛭石、水云母、海绿石、硅藻土、海泡石等。

黏土矿物按成因分为陆源型和自生型两类[39]。陆源型黏土矿物是在地壳表生环境下由物源区母岩风化而来,后经搬运磨蚀和埋藏挤压以杂基形式分散在颗粒之间,其晶形普遍较差,且矿物组分较混杂[14,39]。物源区母岩类型决定了黏土矿物的原始物质组成,具体包括:(1)古老岩石再造形成的黏土团粒;(2)生物成因的同期沉积物或与生物活动有关的黏土;(3)絮状沉淀;(4)分散基质;(5)互层间的页岩薄层;(6)渗滤残渣[42-43]。古气候环境控制着黏土矿物的蚀变程度,为黏土矿物的沉积、转换提供条件。温润潮湿气候下,降雨丰沛、地表径流量大且显弱酸性,岩石和土壤中的碎屑矿物如长石、云母等所经受的淋滤和化学风化作用较强烈,碱金属和碱土金属流失后容易形成高岭石[35,42];干燥或寒冷气候下,地表水转化为弱碱性、盆内水体盐度增大,富钾硅酸盐矿物的溶解有利于伊利石的发育[35,42];蒙脱石形成时间较早,干湿气候均可,主要物质基础为中、酸性火山岩在偏碱性介质中蚀变提供的Na+、Ca2+[42];同样是在干冷气候下的弱碱性—碱性水中,黑云母、角闪石及火山岩岩屑等水解出的Fe2+、Mg2+与长石类矿物反应则析出绿泥石[42,44]。因此,有学者指出,黏土矿物组合可视为判别古气候及其演变过程的有效参数。干旱、半干旱、湿润气候背景下分别形成伊利石+绿泥石、伊利石+蒙脱石+高岭石、高岭石+伊利石的黏土矿物组合[45],且随着风化程度的增强,黏土矿物存在蒙脱石→伊/蒙混层(无序→有序)→伊利石→高岭石的转变趋势。

自生型黏土矿物是在碎屑颗粒沉积后,由某些先驱物质(如砂岩骨架颗粒、火山碎屑物质、陆源碎屑黏土矿物、生物胞外聚合物等)与沉积介质、孔隙介质反应蚀变,或由孔隙水中直接沉淀形成,是成岩过程中复杂水—岩作用的产物[14,46]。简单来说,可将杂基之外的其余黏土矿物视为自生型黏土矿物[46]。与陆源型黏土矿物相比,其表面洁净且晶粒粗大、晶形普遍较好,通常由颗粒边缘向孔隙中心生长,依次呈颗粒包膜、孔隙衬里、孔隙充填及假晶交代等产状[14,43]。因此,自生黏土矿物不仅记录了岩石—流体相互作用的信息和结果,也会直接影响砂岩的孔喉结构与储集性能。

1.1 高岭石

高岭石(kaolinite)亦称高岭土、观音土,主要是由长石、辉石等铝硅酸盐类矿物经风化作用或热液蚀变分解的产物。矿石一般呈白色土块状,因含杂质可显其他颜色,硬度为2.0~3.5,密度为2.54~2.63 g/cm3,具吸水性和可塑性;晶体化学式为Al4[Si4O10](OH)8或2SiO2·Al2O3·2H2O[46-47],理论上是由46.54%的SiO2、39.5%的Al2O3和13.96%的H2O组成。能谱(EDS)和电子探针(EPMA)分析揭示,除Al、Si、O 主要成分外,还含有少量Fe、Mg、Ca、Na 等元素[48-49]。在结构上,高岭石由Si-O 四面体连结Al-O(OH)八面体沿c 轴堆垛,形成1∶1 型的二八面体层[43,46](图1a);结构层间由强氢键连接,分子结构稳定,因此,外来离子和水分子无法渗入晶层间隙,这决定了高岭石不具膨胀性[43,46]。

图1 主要黏土矿物晶体结构示意图(据文献[11]修改)(a)高岭石;(b)蒙脱石;(c)伊利石;(d)绿泥石Fig.1 Schematic diagram of crystal structure of clay minerals (modified from reference [11])

陆源型高岭石在电镜下呈不规则片状位于颗粒表面或充填于粒间孔隙,矿物颗粒磨圆现象明显,但保留部分原始结晶形态,反映了一定距离的搬运和磨蚀、挤压等初步沉积改造(图2a)[29,48]。自生型高岭石又可分为两类[39,50]:一种是长石类矿物受酸性大气淡水、CO2和有机酸等的溶蚀、转化而成,镜下常占据长石溶蚀孔隙、交代长石颗粒或充填于附近粒间孔隙之中(图2b,c),岩心中脉状充填高岭石可能与大气淡水的下渗和流动有关[51];另一种是当酸性孔隙溶液中的Si4+、Al3+不断富集并达到饱和时,直接沉淀、结晶形成高岭石。扫描电镜(SEM)观察发现,自生型高岭石单晶呈假六方片状,集合体多呈书页状或蠕虫状(图2c,d);铸体薄片中为鳞片状叠置集合体,以“斑状”形式充填粒间孔隙(图2e)。这可能与酸性流体中Al3+的络合效应有关,即孔隙中一旦有高岭石析出便先形成一个“凝集核”,之后Al3+继续向这个核部靠拢、聚集[26]。阴极发光测试还显示,自生型高岭石发靛蓝色光,以区别于陆源型高岭石的无光泽雾状蓝光[48]。

图2 四川盆地浅层致密砂岩储层中黏土矿物类型及产状(a)TD109 井,1 335.17 m,凉高山组,陆源片状高岭石,SEM;(b)ZX1H 井,1 764.81 m,凉高山组,长石溶蚀及周缘长石颗粒高岭石化,(-);(c)TD021-X8 井,1 792.41 m,凉高山组,长石溶蚀与附近蠕虫状高岭石,SEM;(d)MQ8 井,1 877.80 m,沙溪庙组,书页状高岭石充填粒间孔隙,SEM;(e)TD021-X8 井,1 792.41 m,凉高山组,斑状自生型高岭石充填粒间孔隙,(-);(f)D21井,1 243.40 m,沙溪庙组,蜂窝状伊/蒙混层,SEM;(g)ZX1H井,1 764.81 m,凉高山组,弯曲片状伊/蒙混层、绿/蒙混层,SEM;(h)D21井,1 239.15 m,沙溪庙组,毛发状、蜂窝状伊利石,SEM;(i)QL202井,2 264.70 m,沙溪庙组,片丝状状伊利石,SEM;(j)ZX1H井,1 764.36 m,凉高山组,被油浸染的孔隙衬里绿泥石,(-);(k)ZX1H井,1 767.74 m,凉高山组,玫瑰花状绿泥石,SEM;(l)JH9井,2 222.30 m,沙溪庙组,绒球状绿泥石,SEM;K.高岭石;I.伊利石;M.蒙脱石;Ch.绿泥石;I/S.伊/蒙混层;C/S.绿/蒙混层;Qtz.自生石英颗粒Fig.2 Types and attitudes of clay minerals in shallow tight sandstones,Sichuan Basin

1.2 蒙脱石

蒙脱石(smectite),一般为白色块状或土状,硬度2.0~2.5,密度2.00~2.70 g/cm3,是在富Na+和Ca2+、贫K+的(弱)碱性介质中形成的二八面体型层状铝硅酸盐矿物(图1b)[42,52],又名微晶高岭石、胶岭石。电子显微镜下,蒙脱石晶粒细小,为0.2~1.0 µm,多呈片状、絮状或毛毡状,其化学成分复杂,分子式可表示为(Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O,晶体结构是由两层Si-O 四面体夹一层Al-O(OH)八面体构成的2:1型(图1b),层间只有较弱的范德华力连接[53]。

蒙脱石的形态、成分和结构决定了其具有阳离子交换性、吸水膨胀性、强吸附性、可塑性和黏结性及较大的比表面积等诸多特点,是造成储层水敏及速敏伤害的主要黏土矿物。由于晶层间引力较弱,蒙脱石Si-O 四面体中的Si4+常被Al3+置换,Al3+又被Mg2+、Fe2+、Ca2+、Na+、K+等阳离子来取代或平衡,直接促使蒙脱石在碱性条件下向伊利石或绿泥石转化,常形成伊/蒙混层、绿/蒙混层黏土矿物(图2f,g)[54-55]。阳离子的替换使层间距不断扩大[53],而多余的负电荷又吸引了大量的极性水分子进入,加之比表面积较大,CH4、CO2等以吸附质形式存在于晶间孔和矿物颗粒表面[56]。干燥条件下,蒙脱石的层间距处于0.96~2.14 nm[57-58],吸水膨胀后可扩大至10~12 nm[59],甚至钠蒙脱石可膨胀20~30 倍;膨胀后的蒙脱石颗粒疏松,在地层流体的冲击下容易分散运移,造成孔隙堵塞。再者,蒙脱石具有良好的可塑性和黏结性,其塑限和液限(即黏土呈可塑状态时的含水量下限和上限)分别可达25%和83%,均明显高于其他黏土矿物。

1.3 伊利石

伊利石(illite)常由钾长石、白云母等风化分解,或其他矿物在外来富K+流体中蚀变形成的一类硅酸盐黏土矿物,其理想化学式为K0.75(Al1.75R)[Si3.5Al0.5O10](OH)2,晶体结构与白云母同为2∶1 型层状二八面体(图1c)[43],但层间K+数量比白云母少且有水分子存在,也称为水白云母。纯净的伊利石通常呈白色土状,但因含杂质而显黄、褐、绿等色,硬度1.0~2.0,密度2.60~2.90 g/cm3。电子显微镜下,伊利石呈极细小的鳞片状集合体,粒径多小于1~2 µm;高倍扫描电镜下,陆源杂基矿物混杂且缺失良好晶形,自生伊利石矿物组成相对单一,晶体较大、晶形较好,多呈片丝状、毛发状、蜂窝状充填于储层孔隙内,晶片长轴一般为5~20 µm(图2h,i)[61-62]。

伊利石中离子取代发生在Si-O 四面体的晶格中,晶层表面负电荷由大量的K+来平衡。因K+水化能力较弱且晶间层形成的K-O 键静电力强,故水分子不易进入晶层,无可塑性。同时,K+的大小刚好嵌入相邻晶层间的氧原子网格空穴中,导致伊利石缺乏膨胀性且阳离子交换能力较低[43,53],物理和化学性质稳定。片丝状、毛发状伊利石易在高速流体冲击下被打碎、迁移并堵塞孔喉,对油气层产生速敏损害;另外,蜂窝状伊利石形成的微孔道可以束缚大量水分子,引起水锁损害[38]。

1.4 绿泥石

绿泥石(chlorite),常为绿泥石族矿物的总称,是化学成分相当复杂的铁、镁、铝的层状铝硅酸盐矿物,常存在于富含Fe2+、Mg2+的偏碱性环境中[42,44]。由于Fe2+的存在和含量差异,矿物颜色呈深浅不同的绿色,硬度为2.0~3.0,密度为2.60~3.30 g/cm3。绿泥石化学通式可表示为(R2+,R3+)5~6[(Si,Al4O10)](OH)8,式中R2+代表二价阳离子,如Mg2+、Fe2+、Mn2+、Ni2+等,R3+代表三价阳离子,如Al3+、Fe3+、Cr3+、Mn3+等。其结构比较独特,属于2∶1 型黏土矿物,但层间充满片状的八面体氢氧化物,故也把绿泥石称为2∶1∶1 型或2∶1+1 型黏土矿物(图1d)[47,63];晶层间以氢键为作用力,并同时存在水镁石层对晶层的静电引力,水分子不易进入,故绿泥石通常不具膨胀性,但Fe2+、Mg2+易于在酸性介质中溶出[64]。

根据晶体排列方式及其与颗粒的接触关系,砂岩储层中的绿泥石多发育颗粒包膜、孔隙衬里和孔隙充填三种产状(图2j~l)。颗粒包膜绿泥石紧贴颗粒边缘生长并将颗粒包裹,但常在颗粒接触处缺失,厚度一般小于1 µm;光学显微镜下因遭受沥青质浸染而呈黑褐色,扫描电镜下晶体杂乱排列且结晶程度较差。孔隙衬里绿泥石呈针状、叶状垂直于颗粒包膜向孔隙生长(图2j),且越接近孔隙,生长空间越充裕,不规则假六边形单晶增大、变疏并产生大量晶间孔,最终形成杂乱堆积的叶片状集合体,厚5~15 µm[65]。孔隙充填状绿泥石晶体与碎屑颗粒无明显垂直或平行关系,多以玫瑰花状、绒球状或分散片状充填于粒间孔隙和次生溶孔中,并常见自生石英颗粒伴生(图2k,l)[33,66];因拥有充足的生长空间和时间,单晶自形程度最高,呈全自形六方片状[67]。

1.5 混合晶层黏土矿物

混合晶层黏土矿物是由不同种类的矿物晶层有序或无序堆叠形成的一类黏土矿物,是黏土矿物转化过程的中间产物,常见的有伊/蒙混层和绿/蒙混层。碱性环境中,随着地层温度和压力的增加,早期蒙脱石丢失层间水,导致晶格重新排列和K+、Fe2+、Mg2+等碱性阳离子的吸附,并逐渐向无序伊(绿)/蒙混层、有序伊(绿)/蒙混层过渡,最终形成伊利石或绿泥石[60]。伊/蒙混层主要以孔隙桥接或充填方式产出,集合体常呈团粒状、棉絮状或蜂窝状(图2f);绿/蒙混层多见卷曲片状、针叶状裹附于碎屑颗粒表面(图2g)。二者均堵塞部分孔隙喉道,且比单一矿物更易遇水膨胀,引发储层水敏及速敏伤害[12,38]。

2 黏土矿物生长的物质环境基础

2.1 蒙脱石

沉积岩形成初期,地表风化淋滤作用较弱,沉积环境多偏碱性,物源区的火山碎屑物质极易蚀变为蒙脱石并随河流搬运入湖(海)[65]。由于河水与湖(海)水在盐度、pH值、电解质类型等物理、化学性质存在差异,陆源黏土的絮凝胶体在河口强水动力条件下难以沉淀,大多以吸附方式在碎屑颗粒表面形成不等厚的机械渗滤黏土包膜[60,68]。另外,泥质经过微生物吞噬、消化与生物黏液一起排出,黏附于颗粒表面并进一步吸附细微的胶体物质,逐渐形成黏土包膜[69-70]。因此,在母岩性质与菌—泥反应的共同影响下,黏土包膜的成分十分复杂,但主要由蒙脱石组成;晶体产状大多平行于颗粒表面,整体呈新月形;在反复的渗滤—蒸发作用下,可形成多层黏土膜,常具同心圆状环边结构[71-72]。砂岩粒度越粗、水中悬浮物越多、水体波动越频繁,越有利于渗滤黏土的形成和保留[60]。

近地表蒙脱石主要是在富盐基、富Ca2+、Na+、贫K+的弱碱性介质中形成。盆地边缘以发育分散质点式和薄膜式蒙脱石为特征,但河流、三角洲、滨浅湖(海)等沉积区的水动力较强,富氧环境下的pH值表现为(弱)酸性,不利于其保存,而沼泽、半深湖、深湖区多为碱性的弱还原环境,适于蒙脱石的形成和保存[73]。早成岩阶段,蒙脱石在上覆地层压力下快速排出吸附水和层间水,但晶体结构尚无太大变化。随着埋藏深度的增加,地温、压力开始升高,蒙脱石逐渐向无序、有序间层矿物转变,蒙脱石含量不断减少[19,73]。

2.2 高岭石

Stoessell[74]认为砂岩中高岭石的发育取决于四个条件:(1)有Al3+来源;(2)孔隙流体呈酸性;(3)适合的pH值缓冲作用;(4)通过孔隙空间的流体数量,即较好的渗流条件,后有学者指出烃类侵位和深部流体亦对高岭石发育存在影响[19,75]。

通常,偏基性的斜长石、钾长石、云母和火山物质中的暗色矿物可以提供高岭石发育的Al3+,尤其是占骨架颗粒较大比例的长石[19,46],偏光显微镜和扫描电镜下常见长石溶蚀和自生高岭石相伴生的现象(图2b,c)。大气淡水下渗也可以补充部分Al3+和Si4+,但具有局限性和区域性。Al3+一方面与硅酸盐反应形成高岭石,另一方面会水解生成H+,但酸性流体的主要来源是相邻烃源岩排出的有机酸和CO2、弱酸性大气水和深部含CO2流体[26,48]。鉴于长石溶蚀速率随pH 值呈U 型变化[76-77],有机酸和CO2对溶液pH 值的缓冲作用显得非常重要。有机酸溶蚀能力较强,释放的大量金属阳离子使溶液从酸性变成弱碱性,HCO-3的出现扮演了良好的缓冲剂,有利于长石的长期溶解[78-79]。除酸性流体和充足的Al3+供应外,穿过砂岩的流体数量也是自生高岭石形成的重要控制因素,即要求一个开放的流体环境[26]。静水压力下Al3+、Si4+活动性低,只有渗流条件较好、流体活动较强时Al3+才会发生迁移,否则就在砂泥岩界面处沉淀形成高岭石,其他K+、Na+等碱性离子的逐渐富集也使孔隙流体矿化度增大、酸度降低[26]。开启的地层系统内,溶出物质能够有效迁出,同时酸性流体不断进入储层对不稳定组分进行溶蚀,渗流优势相较于周围得以保持,促使长石持续溶解和高岭石的远距离富集[79]。在海洋中,后滨和前滨多暴露在大气水淋滤环境,高岭石明显较其他区域更发育[80];在湖泊中,粒度粗、分选好的三角洲前缘水下分流河道、河口坝等砂体具有较高的孔隙度和渗透率,孔隙水流动性好,为高岭石的形成提供了空间和流体动力[81]。

烃类侵位和深部含CO2流体对高岭石的形成存在双层促进:(1)形成的偏酸性环境有利于长石溶蚀和其他黏土矿物向高岭石转化;(2)烃类侵位后的惰性成岩环境使高岭石得到有效保存并抑制其转变进程[19,82],故油层中高岭石含量较高,水层中相对贫高岭石、富伊利石。

2.3 伊利石

砂岩储层中伊利石的形成和生长受物源性质、沉积水介质特征、初始黏土矿物类型及系统封闭性等众多因素影响,富K+的碱性水介质是必要条件[60-61,83]。K+的来源包括火山物质、云母和铝硅酸盐矿物的溶蚀或外来流体的加入[60],碱性水介质包括沉积早期干旱气候下的微咸水—半咸水水体和成岩后期因H+消耗、碱性阳离子积聚导致的pH值升高[75,84]。

大量测试数据统计表明,沉积水动力越弱、流岩比越小、渗透性越差,越易形成伊利石[85]。平面上顺物源方向水体加深,垂向上随埋深增加粒径变细,伊利石含量均呈增加趋势。如湖盆中,伊利石含量自三角洲平原向半深湖—深湖逐渐增高,浊积砂体明显高于三角洲前缘砂体、水下分流河道砂体中部向边部逐渐升高、自河道交汇处向远岸河口坝砂体逐渐升高[86]。

在埋藏成岩过程中,自生伊利石的产出主要有两种方式。一种是由早期渗滤蒙脱石转化形成的伊利石包膜,常具双层结构,内层为薄片状平行颗粒表面连续分布,外层呈纤维状、条带状生长于内层晶体边缘[60]。长石伊利石化或经高岭石化后继续向伊利石转化是另一重要方式,前者形成的伊利石集合体具长石假象,呈丝绒状沿解理方向定向排列,后者则具有高岭石过渡形貌[60-61,87]。两种转化过程将在下文具体阐述,另外,异常高压也促使伊利石含量大幅增加,同时伴有自生石英沉淀[88]。

2.4 绿泥石

大量研究充分表明,砂岩中的绿泥石主要存在陆源、自生和蚀变三种形成方式。陆源它生绿泥石与碎屑颗粒一起搬运、沉积,常以杂基形式分散在水动力较弱的沉积环境中,如三角洲前缘分流间湾[89]。蚀变绿泥石主要由中基性火山岩、黑云母及长石等富铁镁的铝硅酸盐矿物蚀变而来,因此其分布与这些碎屑颗粒表现出空间上的耦合,如在三角洲平原、前缘水下分流河道砂体的边缘部位或前三角洲、半深湖厚层泥岩所夹的薄层砂岩中常见[89]。自生绿泥石的Fe2+、Mg2+来源主要包括:(1)沉积期河流中的铁镁胶体;(2)成岩过程中富铁、镁矿物的水解作用;(3)相邻泥岩压释水的灌入[65,90-92]。其中,在河流入海(湖)处,由于盐度、pH条件的改变和电解质的加入,河水中溶解的Fe2+、Mg2+絮凝胶体以吸附状态附着于颗粒表面难以沉淀,逐渐形成早期绿泥石包膜[93-94]。因此,自生绿泥石的生长具有明显的环境专属性和空间选择性,主要发育在水动力较强的水下分流河道和河口坝微相,且原生孔隙越发育、颗粒粒度越粗、分选越好,越有利于其成长[89,92]。虽然砂质砾岩和含泥砾砂岩也反映了强水动力环境,但大量黏土杂基导致孔隙保存较差,绿泥石生长空间受限[67]。针对国内外不同盆地自生绿泥石发育情况的统计显示,沉积相为三角洲的典型实例占比53%,尤其是前缘亚相;其次是河流和泛滥平原,占比约20%;最低的是沙漠、大陆架等其他沉积相,占比均低于5%[33]。

母岩性质对绿泥石的类型和分布也具有一定的控制作用,由泥质岩蚀变形成的绿泥石比来自镁铁质岩转化的绿泥石具较高的Al/(Al+Mg+Fe)值[89]。陆源绿泥石的Fe、Mg、Mn 含量最高,Al/(Al+Mg+Fe)值介于0.31~0.34,平均值约为0.32。蚀变绿泥石具有较高含量的Fe、Mg和较低含量的Si、Ca,其Al/(Al+Mg+Fe)值在0.37 左右,且周围矿物多富含Ti 元素[89-90]。自生的孔隙衬里和充填绿泥石的Fe、Mg 含量最低,Si、Ca 含量最高,Al/(Al+Mg+Fe)平均值分别为0.42和0.44[89-90]。

显然,不同类型和特征的绿泥石与沉积微相、母岩性质和岩石组构之间的耦合关系还有待进一步明确,这也是深入解析绿泥石生长过程和机理的重要基础。

3 黏土矿物的转化过程与机理

无论原生或次生黏土矿物,在沉积和埋藏成岩过程中随埋深、温度、压力的增加,或成岩流体性质的改变,将发生一系列成岩转化。同时,黏土矿物脱出的水和泥岩释放的含H+孔隙水在压实驱动下进入砂岩储层,提供了溶解长石等物质的部分酸性流体[20,26]。通常来讲,沉积早期的蒙脱石渗滤包膜在富含K+的碱性环境下向伊利石转化,在富含Fe2+和Mg2+的碱性环境下发生绿泥石化(图3a),在酸性环境下易于形成高岭石(图3b)。若经历构造抬升,地层内部的伊利石、绿泥石、高岭石在富含Ca2+、Na+的水体活动下也会向蒙脱石退化或反向转化(图3)[95-96]。显然,黏土矿物的生长和转化是一个极其复杂的地质作用过程,受构造运动、岩石成分、沉积环境、埋藏深度、温压条件、流体运移、异常压力等多种因素控制[97-98]。

图3 黏土矿物随流体性质改变的转化过程示意图(a)蒙脱石脱水及绿泥石化、伊利石化过程(据文献[40]修改);(b)主要黏土矿物相互转化关系(据文献[95]修改)Fig.3 Diagrams of clay mineral transformation process with changing fluid properties

3.1 蒙脱石转化过程

1)蒙脱石生长过程

水热实验显示,蒙脱石包膜的生长过程分为四个阶段(图4a)[99-101]。在浅埋和低温条件下,火山碎屑风化后形成的黏土絮凝物黏附在颗粒表面呈离散状,其边缘卷曲、方向随机(图4b)。随着火山碎屑的持续溶解和埋深增加,离散的黏土片缕不断聚结并生成与颗粒表面相切的“根系”,继而垂直颗粒表面生长(图4c,d)。交叉充填的片状晶体使蒙脱石包膜逐渐增厚,并在一定条件下向伊利石或绿泥石转化,最终形成不规则的四方箱形或多边箱形蜂窝状集合体(图4e)。

图4 蒙脱石生长过程及其形态特征(a)水热实验揭示的蒙脱石包膜成长阶段示意图(据文献[100]);(b)初始蒙脱石絮凝特征(据文献[101]);(c)四川盆地JQ5H井,2 145.60 m,沙溪庙组,片缕状蒙脱石垂直颗粒表面生长;(d,e)四川盆地Da21井,1 239.20 m,沙溪庙组,四方箱形或多边箱形蜂窝状伊/蒙混层集合体Fig.4 Growth process and morphological characteristics of montmorillonite

2)蒙脱石伊利石化

不同学者利用扫描电镜、X 射线衍射、红外光谱等技术手段,从化学动力学、晶体与结构化学等角度总结出三种蒙脱石伊利石化成因机制,分别为固态反应机制、溶解—沉淀反应机制和束状晶体交叉生长机制[60,101]。

固态反应的本质是离子交代,在蒙脱石脱水且八面体中Al3+替换四面体中Si4+的过程中,层间负电荷增加致使K+进入晶层并替换其他阳离子,通过形成伊/蒙混层直至完全伊利石化(式(1))[102]。Powers[103]、Burst[104]、Perryet al.[105]、王行信[106]等学者不断完善了蒙脱石的脱水规律曲线,认为实际地层中蒙脱石的脱水曲线分为高地温梯度和低地温梯度两种情况(图5)[105]。蒙脱石快速脱出部分吸附水后(图5 中I段)将造成某些层间塌陷,导致晶格的重新排列和碱性阳离子的吸附。随后,蒙脱石先后经历两期快速转化和层间水脱出时期,第一期对应向无序伊/蒙混层转化阶段(图5 中II 段);随着温度、压力的持续增加,蒙脱石层状结构彻底坍塌,伊/蒙无序混层转变为有序混层(图5中III段)[82,105]。整个转化过程中,蒙脱石基本结构不变,水介质中的Al3+、K+置换出蒙脱石中的Fe3+、Ca2+、Mg2+等。新形成的伊利石在颗粒大小和形态上保留了先前蒙脱石的特征,但受限于交代过程的非均一性,化学成分上常具有一定差异[60]。释放的阳离子随酸性流体进入砂岩储层,并与长石发生溶蚀作用形成高岭石。根据伊/蒙混层的比例和有序程度,可在电子显微镜下将其分为1Md、1M 和2M1等不同类型,代表了蒙脱石向伊利石逐渐转化的不同阶段[107-108]。

图5 蒙脱石脱水规律曲线(据文献[103-105]修改)(a)Powers[103];(b)Burst[104];(c,d)Perry et al.[105]Fig.5 Dehydration curve for montmorillonite (modified from references[103-105])

溶解—沉淀反应是指蒙脱石层先被溶解,再重结晶形成新的伊利石层(式(2))[109],先存蒙脱石的结构和成分信息很难保留[60]。所谓的伊/蒙混层其实是细小的伊利石集合体,当其继续生长为较大颗粒后,即为X射线衍射观察到的伊利石(图2f、图6a)[110]。

图6 四川盆地浅层致密砂岩储层中黏土矿物转化特征(a)JQ5H井,2 145.22 m,沙溪庙组,蒙脱石伊利石化,SEM;(b)QL18井,2 103.90 m,沙溪庙组,蒙脱石绿泥石化与玫瑰花状绿泥石,SEM;(c)MQ8井,1 877.80 m,沙溪庙组,长石溶蚀与颗粒间高岭石矿物,SEM;(d)YT1井,2 156.67 m,凉高山组,片状高岭石充填于云母片间和粒间孔隙,SEM;(e)MQ9井,1 924.60 m,沙溪庙组,高岭石伊利石化,SEM;(f)YQ1井,1 681.23 m,沙溪庙组,高岭石绿泥石化,SEM;K.高岭石;I.伊利石;M.蒙脱石;Ch.绿泥石;I/M.伊/蒙混层;C/M.绿/蒙混层;Qtz.自生石英颗粒;F.长石;Mi.云母Fig.6 Transformation of clay minerals in shallow tight sandstones,Sichuan Basin

束状晶体交叉生长机制同样否定了伊/蒙混层的发育和存在,认为伊利石是在蒙脱石周围以束状交叉分布,而非均匀的混层状[111]。

由上述可知,固态反应和溶解—沉淀反应均是消耗蒙皂石和K+,前者已被国内外学者广泛认可,而溶解—沉淀反应与束状晶体交叉生长是否可行的关键在于伊/蒙混层是否存在及其矿物学实质,超分辨光学显微镜与原子力显微镜定性观察、微区X 射线衍射和电子探针成分分析成为解决该问题的有效技术手段。图5c 表明温度是控制蒙脱石脱水、伊利石化的一个关键因素,其转化速率与地温梯度密切相关,当地温梯度较高时,浅埋条件下也可快速转变,反之亦然[98,105]。伊/蒙混层中蒙脱石质量分数的突变往往揭示了热异常事件的存在[98,112]。但蒙脱石向伊利石转化的初始温度目前仍存分歧,50 ℃~95 ℃[113]、70 ℃~100 ℃[80]、80 ℃~120 ℃[29]甚至130 ℃~180 ℃[42]均有提及,而后者又与120 ℃~140 ℃的终止温度[114]明显冲突,是值得深入探讨的另一重要问题。

在相同温压条件下,地层水中的K+浓度是影响蒙脱石向伊利转化的另一重要因素[82],且K+浓度越高,形成的伊利石更细[115]。另外,实验证实蒙脱石比其他黏土矿物的碱耗能力更强[116],较高的pH值有助于促进蒙脱石的溶蚀和伊利石化进程。随着氢氧化钠溶液浓度的增加,蒙脱石的溶蚀及膨胀速率加快,至0.05 mol/L达到最佳溶蚀浓度[117]。

3)蒙脱石绿泥石化

蒙脱石向绿泥石转化的过程与伊利石类似,不同的是碱性水介质中富含Fe3+(Fe2+)、Mg2+。转化途径同样分为两种典型情况,一种是在有Al3+参与时,Mg2+进入蒙脱石形成Mg(OH)2层,通过交代作用形成绿/蒙混层并最终转变为绿泥石(式(3))[10],最直观的证据就是绿泥石包膜与绿/蒙混层同时存在于粒间孔隙(图2g、图6b),且绿泥石包膜的形态和化学成分与蒙脱石类似[63]。

另一种遵循先溶解、再沉淀的过程,绿泥石直接替代蒙皂石,并伴有微晶石英沉淀(式(4))[10]。

4)蒙脱石高岭石化

当砂岩储层处于浅埋背景或在近不整合面附近遭受富CO2大气水淋滤,或深埋条件下烃源岩热演化过程中产生的有机酸/酚和CO2进入邻近的砂岩储层后,成岩流体环境转变为(弱)酸性[26,48]。酸性流体对蒙脱石晶体中的铝氧八面体破坏性强于硅氧四面体,尤其是在强酸条件下,铝元素具有优先、快速溶出的特点[118-119]。当Al3+和Si4+浓度达到饱和时,孔隙流体中便结晶析出高岭石,如式(5)所示[120],这种成岩反应可以在温压较低的情况下进行,较强的流体动力有利于形成晶形良好的自生高岭石[48]。

3.2 高岭石生长与转化过程

1)高岭石生长过程

在酸性孔隙溶液中,当Al3+和硅酸根达到饱和时,高岭石就会发生化学沉淀(式(6))[121],且Si4+/Al3+值越低,其颗粒直径越大、结晶度越好。

式中:吉布斯自由能△G=-218.68 kJ/mol,化学平衡常数Kc=e88.2(标准状态),说明即使在近地表较低的温度和压力条件下,反应也可自发向右进行。因此,Al3+的物质来源与迁移机理成为困扰高岭石生长过程的关键科学瓶颈[78]。

目前普遍认为长石溶蚀提供了形成高岭石的大部分Al、Si、O,二者常呈较好的空间伴生性且含量负相关(图2b,c、图6c)[48,81]。实验和数值模拟揭示,斜长石,特别是钙长石,在相同的温度下具有更低的吉布斯自由能,是以钙长石最不稳定,且钙含量越高越易溶解;钾长石的吉布斯自由能最高,钠长石介于二者之间,这很好地解释了储层中斜长石的选择性溶蚀现象(表1)[67,122]。低温条件下,钙长石就可以大量溶解并引发高岭石的显著沉淀,且溶液中的硅质也主要以高岭石的形式存在(式(7)),因此,在浅埋藏水—岩体系内,钙长石的溶解对高岭石的生长起决定性作用。表1数据还显示,当压力不变时,钾长石、钠长石的吉布斯自由能增量随温度的升高而逐渐降低,反应更易发生,说明高温促使钾长石、钠长石的溶解趋势增强[122],深埋藏成岩条件下通过式(8)、式(9)向高岭石转化[19,46,87],石英的生成量有所提升。压力增加对吉布斯自由能的影响虽没有温度效应明显,但可以适当增加长石的溶解度,从而有利于高岭石和石英的形成[123]。

表1 不同长石溶解的相关反应在主要温压点的吉布斯自由能△G值(据文献[122])Table 1 △G of feldspar dissolution reactions at different temperatures and pressures (after reference [122])

较之长石类矿物,火山岩岩屑中的辉石、角闪石等暗色矿物的热力学稳定性更差,在早成岩阶段就通过水解作用为高岭石的发育提供部分Al3+,其化学沉淀过程可表示为式(10)、式(11)[46]:

砂岩中还可见发育在膨胀云母片之间的高岭石,其与云母呈过渡关系或就近沉淀,并保留云母的残余结构(图6d),表明高岭石的生成明显是以消耗云母为代价(式(12))[80]:

2)高岭石伊利石化

扫描电镜观察发现,部分书页状高岭石由中心向边缘逐渐变薄并具卷曲片状形态,表明高岭石有向伊利石蚀变转化的趋势[12,18,61],最终呈片状、丝缕状在粒表或粒间搭桥成纤维状网络(图6e)。

Bergeret al.[124]提出成岩流体中的K+/H+活度比控制了伊利石化作用过程,比值越高,反应发生的能量门限就越低,而地层温度是伊利石化动力学屏障得以克服的关键(图7)。在50 ℃~120 ℃范围内,有机质熟化过程所排出的有机酸、CO2等导致流体中H+浓度较大,K+/H+达不到高岭石伊利石化的能量门限,高岭石在酸性孔隙水中稳定存在。这也印证了距烃源岩越近的砂岩中高岭石含量越高,因其更易受到富H+流体的影响[125]。随着埋深加大,温度压力继续升高,相对封闭系统内长石的溶解速度大于介质的迁移速度,H+的不断消耗和K+、Na+等碱性离子逐渐积累导致孔隙介质向碱性环境转变,自生高岭石的稳定性开始变差[81]。在钾长石的不断溶解下(式(8)),K+/H+活度比逐渐增大到伊利石和高岭石的两相边界,高岭石伊利石化(式(13)[18,61])将快速发生并成为自生伊利石形成的主要途径,对应的阈值温度为120 ℃~140 ℃[61,84]。

图7 含钾矿物欠饱和状态下伊利石结晶△G 值与K+/H+活度比关系(据文献[124])Fig.7 △G scale for illite growth increase vs.K+/H+ activity ratio for potassic phases in undersaturated condition (after reference [124])

对于没有额外K+供给的封闭系统而言,“本地钾”是实现高岭石伊利石化的唯一钾源,主要来自钾长石溶解的两个反应路径:一是钾长石高岭石化过程释放的K+(式(8)),另一类来自钾长石直接蚀变为伊利石的反应过程[46,84,126](式(14))。热力学分析显示(表1),这两个途径的吉布斯自由能相差不大,可在酸性流体环境中同步进行。

在同一成岩体系中,式(13)通过消耗K+克服了钾长石溶解的动力学屏障,向流体输送的H+又进一步推动了式(14)的进行,表明高岭石的伊利石化是促进钾长石溶解的重要驱动反应[21,61],这个过程可以综合成反应式(15)[18,46,60]:

动力学模拟和实际案例解析已证实[18,46],反应式(15)一旦启动就会持续发生,直至钾长石或高岭石中的一种基本耗尽,二者的相对含量决定了高岭石伊利石化的规模和产物组合类型[60,80]。若钾长石大于高岭石,砂岩中高岭石几乎全部伊利石化、钾长石部分溶解,反应产物仅存伊利石(图8a);钾长石与高岭石含量相当,反应结果相似,但钾长石可全部溶解(图8b);若钾长石小于高岭石,钾长石全部溶解,但仅部分高岭石伊利石化,地层中自生伊利石与高岭石共存且不含钾长石(图8c)[80,124]。

图8 砂岩埋藏过程中高岭石转化与伊利石生长模式(据文献[124,127])(a)钾长石:高岭石>1;(b)钾长石:高岭石=1;(c)钾长石:高岭石<1;(d)蒙皂石+钾长石Fig.8 Kaolinite transformation and illite growth pattern during sandstone burial (after references [124,127])

如果存在充足的外源K+注入,伊利石沉淀的动力学壁垒将被打破,温度不再是主导高岭石伊利石化的决定性因素。此时,非但原始钾长石不溶解,甚至可能出现自生钾长石和自生伊利石的共生[84,127-128]。

3)高岭石绿泥石化

书页状高岭石集合体中间夹杂的玫瑰花状绿泥石(图6f)、高岭石—绿泥石混层的发育[107]和绿泥石包膜中高含量的铝[66]等成岩现象明确了高岭石向绿泥石的转化(式(16))[129]。该过程同样发生在碱性环境中,不同的是需要Fe2+、Mg2+的局部富集,可由火山碎屑溶蚀或深部热流体等提供。

3.3 伊利石生长过程

砂岩中的伊利石主要有陆源碎屑和成岩自生两类。前者成因简单,常见于富含泥质的近源快速堆积砂体,镜下呈杂基紧密堆积于颗粒之间难以观察[46]。后者的成长贯穿整个成岩过程,集合体多呈片丝状、蜂窝状或毛发状,具体又包括先驱矿物转化和地层水化学沉淀两类[32]。先驱黏土矿物既可以是蒙脱石,也可以是高岭石,其转化过程和机理已在前文介绍,此处不再赘述。长石溶孔中的发丝状伊利石[39]和呈长石颗粒假象的伊利石[84]表明交代长石是伊利石形成的另一重要途径(图9a),转化进程受长石溶解—K+迁移—伊利石化三元体系中速率最慢阶段的控制[125]。在三类长石中,钙长石伊利石化需求的吉布斯自由能增量最低(表1),说明在有K+供应的条件下更易转变成伊利石(式(17))[46,122]。钾长石和钠长石形成伊利石的反应(18)、(19)主要受动力学约束[46,122],需要K+/H+活度比维持在伊利石的稳定域。

图9 四川盆地浅层致密砂岩储层中伊利石发育特征(a)ZQ1井,2 253.29 m,沙溪庙组,长石伊利石化,SEM;(b)ZQ1井,1 810.92 m,沙溪庙组,伊利石片状内层膜,SEM;(c)YQ1井,1 583.60 m,沙溪庙组,伊利石片状内层膜,SEM;(d)JQ5H 井,2 145.55 m,沙溪庙组,伊利石片状内层膜与长条状外层膜,SEM;(e)JQ5 井,72.00 m,沙溪庙组,伊利石长条状外层膜,SEM;(f)ZQ1井,2 253.29 m,沙溪庙组,伊利石片状内层膜与丝状外层膜,SEMFig.9 Illite characteristics in shallow tight sandstones,Sichuan Basin

周晓峰等[130-131]通过研究指出,充填状伊利石发育双层结构,依附颗粒部分为内层膜,向孔隙方向为外层膜。内层膜呈片状或长条状,化学组分在一定程度上受依附颗粒的影响(图9b,c);外层膜化学组分主要受控于孔隙流体,单体为长条状或丝状(图9d,e)。伊利石生长过程中,单体形貌由片状逐渐向长条状至丝状转化[132-133],故外层膜更加成熟,其生长在前,内层膜形成滞后。由孔隙向颗粒,当内层膜的片状或长条状单体形成时,先期的外层膜片状和长条状伊利石分别向长条状和丝状转化,且生长时间越久,发丝越细(图9d~f)[130]。但笔者并不赞同伊利石由孔隙中心向骨架颗粒生长的机制和模式[130],因为该模式下的外层膜缺少结晶基底,这与通常理解的胶结物由颗粒边缘向孔隙中心生长有明显区别,黏土矿物“由早向晚”生长的观点有待商榷,伊利石初始成核作用及晶体生长过程值得深入研究。当烃类大量充注储层后,形成的偏酸性环境阻止了伊利石继续生长,最小粒级自生伊利石的K-Ar/Ar-Ar 同位素年龄代表了最早的油气聚集时间,广泛应用于油气成藏时限分析[134-136]。

3.4 绿泥石生长过程

前文已叙,由骨架颗粒向孔隙方向,自生绿泥石的三种赋存状态,即颗粒包膜状、孔隙衬里状和孔隙充填状绿泥石的发育具明显的世代特征,先期贴近颗粒边缘的内层膜晶形差,而后期充填孔隙的外层膜晶形好(图2k)[65,89]。关于绿泥石的生长机理,前人研究众彩纷呈并在精细测试技术的助推下不断发展,但不同沉积环境中的绿泥石成因各异。大陆沉积物中低Fe/(Fe+Mg)的绿泥石可能源于富镁的坡缕石、蒙皂石等黏土碎屑,河流入海口的高Fe/(Fe+Mg)绿泥石多由磁绿泥石转化形成,而浊积岩中的绿泥石与火山碎屑存在空间耦合,Fe/Mg范围较广[66,137-138]。笔者综合各家观点认为,明确Fe2+、Mg2+的物质来源与迁移过程,并提供直接的地质或地球化学证据来示踪,是探究绿泥石生长机理的基础,这涉及到物理、化学、生物等多重地质条件的影响。

1)绿泥石内层膜生长过程

绿泥石内层膜的同沉积黏土膜转化模式由Ehrenberg[28]建立,经不断补充、完善[68,90,139]被广泛认可。有研究指出,河流中溶解态铁的浓度大于25 µmol/L[140],而开阔海洋中仅为0.000 3 µmol/L[141],这意味着大量含铁絮体存留在河流入海(湖)处并不断络合极细黏土[142]。当携带悬浮沉积物的地表水向下通过松散、低盐度的渗流带时,较粗的砂粒基质形同过滤器捕集到大量黏土级碎屑,被视为同沉积黏土膜形成的重要途径[138,143],其中海洋环境以发育磁绿泥石膜为特征(图10a)[144],湖泊环境则形成蒙脱石膜[138]。地层温度高于60 ℃后,磁绿泥石在富Fe2+、Mg2+流体作用下相继发生固态转变和溶解—重结晶反应形成连续的颗粒包膜绿泥石,两种机制的临界温度约为150 ℃[144],Fe2+、Mg2+主要由母岩中的黑云母、中基性火山岩等水解提供。有学者质疑该模式可能与地质实况不符,因为这一过程主要发生在同生成岩阶段[30,65],即初始压实之前,但镜下很难见到颗粒接触位置发育绿泥石膜或受挤压后的异地堆积现象[145]。四川盆地沙溪庙组、挪威北海白垩系Agat 组样品的颗粒接触位置则可见早期富铁黏土薄膜的发育,并存在向孔隙端“流动增厚”的迹象(图10b,c)[146],有力地支持了机械渗滤成膜机制。这可能与孔隙空间、压实—压溶强度等因素相关,因为随着压实作用的不断增强,颗粒接触尖端的有效应力增加显著,致使绿泥石迅速溶解并向较低应力孔隙区迁移[138]。

然而,针对英格兰西北部Ravenglass河口的解剖并未发现黏土矿物渗入潮间带沉积物,而是存在生物膜丰度与黏土覆盖率之间的正相关[147-149]。故此,生物诱导的绿泥石内层膜生长机制逐渐进入地质学者的研究视野。河口[150]、潟湖[151]、湖泊[152]、边缘海[148-149,153]、海底热液区[154]等不同沉积环境和室内实验[155]均记录到微生物—黏土矿物—沉积物相互作用,揭明了微生物群落(硅藻、裸藻、甲藻、蓝藻和其他光合细菌)[156]在粒度分布[157]、沉积物搬运和底床形态[158]等方面的重要功能,尤其是硅藻被视为促进颗粒包膜发育的关键(图10d~g、图11)[148-149,159]。微生物优先附着在营养物质较集中的颗粒表面,通过活跃的细胞分裂实现定殖和生长,并分泌大量的胞外聚合物(EPS)形成生物膜[100,160](图10d~f、图11a~d)。EPS 主要由多糖、蛋白质、核酸和脂质等构成(图10g)[159,161],部分多糖表现出对特定金属离子的偏好,而其中的带负电基团(如羧基)可在阳离子参与下与黏土矿物桥接并进一步吸引阴离子基团(图11e)[144,159]。黏土矿物具有硅氧烷表面,与水分子形成弱氢键后可吸附EPS中不带电的蛋白质;同时,围绕阳离子的溶剂层还通过与水的偶极—偶极相互作用促进部分EPS 再黏附(图11e)[159,162]。整体上,黏土矿物通过提供必要的营养物质来孕育微生物,而生物膜提供矿物生成的成核位点和微区环境[144]。随着温度和时间的增加,EPS 中蛋白质降解,其残余物与黏土矿物形成复合体(图10d~f)作为黏土包膜继续生长的模板,并在一定程度上抵消沉积物的搬运和磨蚀[149,163]。因此,EPS 的产生对细粒沉积物(<63 µm)的黏结有着深远影响[150,159]。另外,生物扰动、穴居、消化等行为也是将黏土矿物引入砂级沉积物的重要方式[70,146,148]。

图11 河口沉积物中黏土矿物—胞外聚合物相互作用过程及黏土包膜多尺度生长模式(据文献[159])(a)潮上带—潮间带河口坝沉积剖面示意图;(b)生物膜—黏土界面导致的潮间带黏土—EPS复合体形成过程示意图;(c)黏土—EPS复合体引发的颗粒表面黏土包膜形成过程示意图;(d)颗粒表面黏土包膜黏结结构示意图;(e)颗粒表面黏土—EPS复合体的分子尺度形成过程示意图Fig.11 Multiscale model of exopolymeric substances (EPS)-clay mineral interactions and formation of clay coating in estuarine sediments (after reference [159])

综上,在绿泥石内层膜的生长过程中,渗滤机制是否可行及其适用环境和控制范围如何界定,生物膜是否普遍存在及其发育的环境、过程、生物—沉积相互作用等诸多谜题尚需逐一解答,才能明确两种机制是有主次之分,还是双线并行,最终才能在厘清黏土矿物生长机理的基础上为有利砂岩储层的预测提供思路。

2)绿泥石外层膜生长过程

步入成岩阶段后,由于流体物理、化学条件的改变而导致的富铁镁矿物溶蚀与重结晶作用是绿泥石外层膜形成的主控机制,具体包括溶解—重结晶型和直接结晶型两类[164]。随着埋藏深度和地层温度的增加,成岩环境开放性减弱、孔隙流体碱性增强,化学成分不稳定的早期绿泥石包膜发生重结晶,迅速转化为孔隙衬里绿泥石[65,67,89],同时也为后续绿泥石生长提供有效成核点[165]。初期,狭小的生长空间和过快的生长速度导致颗粒边缘的绿泥石单晶自形程度低,集合体杂乱堆积,且铁镁物质难以在短时间内充分进入绿泥石晶格[67]。由于小颗粒热力学稳定性差,会自发发生小晶体的溶解和大晶体的长成,即Ostwald 熟化过程[137],加上易溶组分不断分解Fe2+、Mg2+,后期形成的绿泥石单晶自形程度逐渐变好。当流体中Fe2+、Mg2+达到一定浓度时,单个绿泥石晶体在相对充足的生长空间和时间里形成全自形六方片状,Fe2+也可完全取代晶格中的阳离子[65,67]。因此,绿泥石单晶可能具有化学成分环带,表现为从根部向边缘Si/Al 逐渐减小,铁镁质量分数有所增加[137]。孔隙充填状绿泥石是中成岩阶段由孔隙水中直接结晶形成,所需Fe2+、Mg2+来源于火山碎屑、长石溶蚀和泥岩压释流体等[65,89]。在较高的温度和压力下,蒙脱石、高岭石和伊利石在富Fe2+、Mg2+流体中向绿泥石转化(式(3)、式(4)、式(16))是充填状绿泥石的另一生长机制。

总之,绿泥石包膜可以在石英、钾长石、斜长石和岩屑等颗粒表面向任意方向无差别生长,但晶体通常沿垂直于颗粒的001方向呈板状延伸,且单晶长度基本不超过10 µm,集合体则呈玫瑰花状或绒球状杂乱堆积(图2k,l)[66,91]。Choet al.[166]通过实验再现了绿泥石包膜的三个生长阶段:(1)颗粒表面的三维成核阶段;(2)层向生长阶段;(3)螺旋生长阶段(图12)[138,166]。当实验溶液达到过饱和状态时,绿泥石晶体首先在容器壁(颗粒表面)任意位置随机形成微小三维晶核,并连成极薄的颗粒包膜(图12a,b)。进入层向生长阶段后,这些晶核不断向孔隙方向延伸,薄板状单晶构成玫瑰花状集合体(图12c)。随着实验的进行,绿泥石单晶继续沿001 方向螺旋生长,最终形成直径约10 µm的六方片状(图12d)。

图12 砂岩中自生绿泥石晶体生长过程示意图(据文献[138,166])(a1)绿泥石在任意颗粒表面上无差别生长;(a2)绿泥石成核和生长过程的系统能量与时间关系示意图,字母a~d代表4个阶段;(b1)三维成核阶段;(b2)局部放大区域显示微小、随机的三维绿泥石晶核;(c1)层向生长阶段;(c2)局部放大区域显示晶体沿001向生长;(d1)螺旋生长阶段;(d2)局部放大区域显示约10 µm厚绿泥石包膜,单晶呈六方片状或针叶状Fig.12 Schematic diagram of authigenic chlorite crystal growth process in sandstones (after references [138,166])

4 黏土矿物对砂岩储层的控制作用

4.1 黏土矿物对孔喉结构的双重影响

不同研究工区、不同类型和产状、不同成岩阶段的黏土矿物,通过生成沉淀、抵抗压实、抑制胶结、促进溶蚀、改造孔喉结构等方式对储层品质产生不同程度的影响[15,18,164],结果大致可分为破坏[164,167]、保护[12,168]和微弱影响[94,169]。从绝对意义上讲,任何一种胶结物的形成都是占据孔隙、堵塞喉道、降低储渗性能的过程[33,164],但早期沉淀的极薄黏土包膜相对原生粒间孔隙而言几乎可忽略不计。虽有学者认为黏土矿物硬度小、密度低、塑性强,其抗压保孔的能力十分有限[34,94,164],但深层异常高孔储层中往往广泛发育绿泥石包膜(图10b,c)[28,91,170],且绿泥石含量与原生孔隙含量呈明显的正相关(图13a,b)[170]。之所以存在绿泥石含量与孔渗关系备受争议的现象,可能与研究过粗有关。只有在给定沉积微相、岩石类型、泥质含量等条件的前提下,包膜或衬里绿泥石对储层物性的保护作用才会凸显(图13c,d)[33]。笔者对黏土包膜可在一定程度上缓解压实作用持赞同态度,如同柴垛亦可撑住石块,更重要的贡献在于有效阻止了压溶作用的进行[25,67,170]。另外,黏土矿物在占据原生孔隙的同时将其部分转化为自身的晶间孔,丝发状伊利石、搭桥状伊利石、玫瑰花状绿泥石、针叶状绿泥石、蠕虫状高岭石及六方板状高岭石的平均视微孔率分别为64%,49%,23%,13%,35%和22%[41,35]。纳米—微米级晶间孔、层间缝隙既可作为气态烃的储集空间,又与原生粒间孔隙一并为地层流体提供渗流通道[12,14,171],促进后期溶蚀作用持续进行。因此,相对硅质和碳酸盐岩胶结物,黏土矿物对储层质量的建设作用强于其沉淀的消极影响,高岭石、绿泥石反而成为酸性或碱性环境下产生次生孔隙的标型矿物[19,33]。过多、过厚的黏土矿物则直接对储层质量产生负面影响。统计显示,绝对含量大于7%的高岭石和绝对含量大于8%的绿泥石会大大降低储层的孔隙度[14,166],丝缕状、毛发状伊利石将孔隙分割成无数微孔,在侵占有效孔隙的同时增加了孔喉迂曲度,极大地降低了储层的渗透率[12,47,79]。

图13 砂岩中绿泥石含量与孔渗关系散点图(a)川西坳陷须二段绿泥石含量与原生孔隙面孔率正相关关系[170];(b)川西坳陷须四段绿泥石含量与原生孔隙面孔率正相关关系[170];(c)北部湾盆地涠西南凹陷涠三段A5井绿泥石含量与孔隙度关系[36];(d)北部湾盆地涠西南凹陷涠三段A5井绿泥石含量与渗透率关系[33]Fig.13 Scattergrams of chlorite content vs.porosity and permeability in sandstones

蒙脱石、伊利石、绿泥石包膜能够有效抑制石英次生加大从而保护粒间孔隙[12,28,30,168,172-173],但其抑制机理尚无定论。一些学者提出[28,30,66,174],颗粒包膜和孔隙衬里绿泥石包裹石英颗粒后,在空间上将自生石英的结晶基底(颗粒表面)与富含SiO2的孔隙流体隔绝开来,进而抑制了次生石英加大,但大量发育的晶间孔可能无法完全阻止孔隙流体与颗粒表面的物质和能量交换,如常见包裹绿泥石膜的长石颗粒被溶蚀形成铸模孔(图14a,b)[65,173,175]。绿泥石的层间八面体氢氧化物还对孔隙流体pH值有一定的调节能力,使孔隙流体基本处于偏碱性水介质环境,特别是在绿泥石生长的石英颗粒表面碱性更强(pH=7~9),石英的溶解度也就更大,难以达到过饱和结晶[64,176]。Billaultet al.[173]还认为自生石英具有很强的向孔隙生长的特性,孔隙衬里绿泥石通过降低颗粒上单晶生长点的数量[30,32]、提前占据部分孔隙空间来抑制其生长。照此观点,在孔隙流体内SiO2过饱和的条件下,与绿泥石同期或稍晚的自生石英雏晶理应可见。Walderhauget al.[176]证实在伊利石、绿泥石包膜下方的石英颗粒表面和黏土包膜间隙中发育微小的自生石英雏晶(图14c,d),但由于碎屑颗粒与孔隙流体之间存在界面表面能效应,微细矿物晶体(<0.25 µm)的溶解度高于同类矿物较大晶体[177-178],导致仅在包膜间隙大于5 µm 时才允许其继续向孔隙生长为次生加大边(图14e,f)。因此,黏土包膜并非阻止了孔隙流体到达颗粒表面和微细石英雏晶的附着、成核,而是通过矿物晶体比表面积、矿物晶体间隙尺寸、孔隙流体SiO2饱和度、地层温度等因素抑制了其持续生长的可能[176]。显然,黏土包膜与硅质胶结之间存在明显的物质竞争、环境竞争和空间竞争生长关系,颗粒表面的物理空间结构、化学微区环境等有待深入研究。

图14 包裹黏土包膜的长石溶蚀与次生石英加大特征(a)四川盆地D21井,1 239.15 m,沙溪庙组,包裹绿泥石膜的长石颗粒溶蚀;(b)四川盆地QL18井,2 082.34 m,沙溪庙组,包裹绿泥石膜的长石溶蚀铸模孔;(c)北海北部30/5-3 S井,4 146.50 m,三叠系Lomvi组,伊利石包膜覆盖下的微细石英雏晶,SEM,(据文献[176]);(d)挪威6506/6-1井,5 242.75 m,下侏罗统Tilje组,绿泥石包膜覆盖下的微细石英雏晶,SEM,(据文献[176]);(e)挪威6506/11-3井,4 206.50 m,中侏罗统Garn组,穿过绿泥石包膜间隙的次生石英加大,SEM,(据文献[176]);(f)挪威6506/6-1井,5 242.75 m,下侏罗统Tilje组,穿过绿泥石包膜间隙的次生石英加大,SEM,(据文献[176])Fig.14 Characteristics of feldspar dissolution and quartz overgrowths of clay-coated particles

4.2 黏土矿物对油气开采的损害作用

油气开发实践表明,黏土矿物的成分、含量和赋存状态是决定储层敏感性的关键因素,也是造成储层伤害、影响储层采收率和油气产能的重要机制[37-38,42,179]。蒙脱石粒径细小、比表面积大、吸水膨胀性强,且膨胀后的颗粒疏松,容易在流体作用下分散运移并堵塞部分喉道,引起储层水敏和速敏伤害[117]。伊利石和伊/蒙混层同属膨胀型矿物,损害机理主要为水化膨胀,且丝发状伊利石在外来流体冲击下易被冲断、堵塞孔喉,降低渗透率[12,38]。另外,伊利石酸蚀后生成水合二氧化硅沉淀可能造成储层酸敏性伤害[62]。高岭石和绿泥石则属于非膨胀型矿物,对储层的潜在危害主要表现为颗粒运移、堵塞或分割孔喉[38,82],不同的是高岭石易与碱性流体作用产生沉淀[38],绿泥石则会在酸性条件下形成Fe(OH)3胶体沉淀[14,38],二者分别对储层造成碱敏和酸敏伤害。

5 黏土矿物研究展望

1)新能源布局下的黏土矿物吸附行为多手段表征

随着经济社会快速发展,我国油气对外依存度持续攀升,非常规油气(如致密砂岩油气、页岩油气、油页岩和煤层气等)已然成为未来增储上产的战略接替领域[1-5]。黏土矿物不仅广泛影响砂岩储层的渗流性能、致密化进程及开发效果,更是作为泥页岩的重要组分决定其吸附烃类物质的行为、机理和能力[53,56],孔隙类型、孔径分布、孔隙体积和比表面积等孔隙结构信息是查明页岩油气赋存特征和微运移机制的重要基础[180-181]。

目前,用于表征页岩吸附能力的手段主要包括室内实验、数值模拟和分子模拟[181]。实验室多种检测技术与方法的联合应用取得了较为显著的研究成果:(1)光学显微镜、透射电子显微镜、高分辨率场发射扫描电镜、原子力显微镜的组合具有样品制备简单、分辨率高等优点,如氩离子抛光及场发射扫描电镜最高可放大至210倍,而原子力显微镜达到了原子级分辨率,二者可识别等效直径为5~6 nm 的孔隙[182-183],保证了全尺度孔隙网络的半定量观测;(2)高压压汞和低压气体(N2和CO2)吸附实验已广泛应用于定量表征泥页岩储层中0.35~300 nm 的孔径分布[183-184],高压等温吸附实验则通过磁悬浮天平测量不同压力条件下的甲烷吸附量来揭示各类黏土矿物的吸附能力[184-186],但高压实验可能导致岩石破裂并产生与天然缝难区分的微米裂缝;(3)核磁共振技术因其无损、快速、破坏性小等优点已发展为测定孔隙体积与结构的重要技术方法,其测试孔径范围较广,能有效弥补吸附实验与高压压汞的不足,但对黏土矿物间的微小孔隙及裂缝等超大孔隙的检测精度较差[186-187]。数值模拟技术在剖析油气渗流规律、预测单井产能方面优势明显。泥页岩储层以纳米级孔隙为主,流体表现为非达西渗流,传统的网格离散法和油藏数值模型无法准确描述其渗流机理[188-189]。因此,学者们通过实际工作相继建立并不断改进了一系列甲烷吸附模型,认为Langmuir 模型和修正的Uniform Langmuir(Unilan)模型具有拟合参数少、精度高的优点[181,190];MENGER 海绵模型、Frenkel-Halsey-Hill(F-H-H)模型和Volume-Specific SurfaceArea(V-S)模型分别适合计算宏孔、介孔和微孔的分形维数[191];在考虑不同温度、压力、尺度空间吸附差异的前提下,以Dubinin-Astakhov(DA)微孔充填模型结合Brunauer-Emmett-Teller(BET)多分子层吸附模型,建立了DA-BET 超临界甲烷等温吸附模型[192]。分子模拟技术是利用计算机强大的计算能力和图像显示能力,从原子和分子尺度构建结构单元并分析分子间的运动行为,进而揭示页岩储层的微运移机制[180-181]。然而,该技术目前仅能针对单因素进行分析,偏理想化的模拟体系无法与复杂的地质条件完美匹配,需结合物理实验结果进行验证[181]。

2)新技术推动下的黏土矿物生长过程微尺度解析

近年来,随着铸体薄片、扫描电镜与能谱分析、X射线衍射、电子探针、阴极发光、荧光光谱等现代分析测试技术的发展和完善,针对黏土矿物形貌结构、化学组分、生长序列和控储作用的认识不断进步[26,50,138],而依托纳米科技创新形成的微、纳米计算机断层扫描(CT)、透射电子显微镜(TEM)、原子力显微镜(AFM)和聚焦离子束扫描电镜成像(FIB-SEM)等技术为高清、高精的解析纳米尺度矿物结晶行为提供了必要分析手段[138,159,186,193-201]。

CT扫描是一项无损物质空间结构并可快速完成三维图像重构的技术,具有分辨率高、直观准确等特点,按分析尺度可分为毫米级、微米级和纳米级三类[193-194]。micro-CT的最大分辨率为0.7 µm,无法全尺度清晰表征黏土矿物的形态变化和页岩内部的孔隙结构[195]。nano-CT 的成像分辨率目前也仅能突破至10 nm,且局限于定性测量;同时,要求实验样品直径不超过65 µm,导致样品可能缺乏代表性[193]。因此,在应用微、纳米CT 扫描检测时还需结合气体吸附、透射电子显微镜、原子力显微镜等更高精度的微尺度表征技术。

透射电子显微镜(TEM)的成像和分析原理是,由电子枪发射出来的高能电子束经两级聚光镜聚焦后入射到纳米级厚度的样品上,电子与样品中的原子碰撞后形成弹性散射(仅方向改变)和非弹性散射(方向改变、能量损失)[196-197]。弹性散射是电子衍射谱和相位衬度成像的基础,非弹性电子及其转成的其他信号,如X 射线、二次电子、阴极荧光和透射电子等,主要用于样品的元素分析或表面观察[197]。相比于传统的显微成像技术,TEM 不仅可以获得原子分辨率的结构信息,还能给出纳米尺度的原位化学信息,是纳米地质学研究的重要分析平台[196-197]。例如,Honget al.[198]利用TEM技术观察到高岭石晶体中0.7 nm 间距的晶格条纹直接转变为伊利石的1.0 nm和蒙脱石的1.5 nm的晶格条纹,补充了黏土矿物转化过程中形成三组分混层矿物的直接证据。Heet al.[199]获得了固态下001面网间距为0.7 nm的埃洛石向网间距为1.2~1.3 nm的蒙脱石转变的证据,提出了1∶1型黏土矿物向2∶1型黏土转变的新路径。

原子力显微镜(AFM)是利用探针针尖与样品表面原子间的相互作用力进行检测,通过探针与导电介质之间随距离变化的隧穿电流进行成像[200-202]。由于成像原理不涉及电子束,AFM 可以摆脱真空条件开展变温、变压、液相等原位实验;在功能上,可以一并获取样品表面动态三维图像和孔隙结构、表面电势分布以及力学性能等定量化信息。AFM具有原子级的超高分辨率,横向分辨率能达到1 nm,纵向分辨率高至0.2 nm[201],在黏土矿物形貌、结构微区分析和生物膜形成过程原位表征等方面具有广阔的应用前景[159,200]。

在时间尺度上,自生伊利石的K-Ar、40Ar-39Ar同位素精准定年技术发展迅速,且广泛应用于油气成藏期确定。K-Ar 测年法需要的样品量较多(10~20 mg),但无需特殊处理;40Ar-39Ar 用量少、精度高、地质信息丰富,但尚面临高纯度自生伊利石的提取与分级、克服核反冲造成的Ar 原子丢失等技术难题[202-205]。

3)新认识引领下的沉积盆地流—岩作用全系统研究

前已叙及,黏土矿物的沉淀、生长、转变、消失等过程无不与地质流体—围岩矿物之间的相互作用密切相关。地质流体被定义为“由油、气、成矿溶液和地下水四部分组成的溶液”,是控制盆地中物质演变和能量再分配的主导因素之一[24,205],与温度、压力、构造应力和微生物等地质要素一并构建起盆地成岩场[24]。由于大地构造背景和古地理、古气候、古物源等条件的差异,不同沉积盆地的构造活动、沉积体系、热流场、压力场、流体活动场的演化特征迥然不同,必将导致各具特征的水—岩—烃相互作用过程和结果[78]。将流体—岩石相互作用的时空属性与矿物生长、孔喉变化相结合的思路已经成为当今成岩作用研究的一个显著特点,把成岩子系统的演化过程纳入盆地大系统中进行考察是一个符合逻辑的自然推论[78]。基于此,李忠等[78,206]提出了当今含油气盆地成岩系统研究的核心科学问题,即“盆地动力学过程控制的流体—岩石相互作用系统及其时空演变机制”,旨在从更高层次理解成岩反应、物质输运与配置的特征和驱动机理,具体包括成岩作用的盆地动力学背景、流体—岩石作用机制与分布规律、黏土矿物转换和埋藏热演化阶段、成岩—成储—成藏过程解析与模拟、油气勘探开发应用等研究领域,并有学者归纳总结了成岩亚相、成岩相、成岩体系和成岩体系域不同尺度的流体—岩石相互作用新认识[128]。

6 结论

(1)砂岩中常见的黏土矿物主要包括蒙脱石、高岭石、伊利石、绿泥石及伊/蒙混层、绿/蒙混层,其形貌结构、分布含量、组合类型、转化过程等特性错综复杂,记录了盆地中构造背景、物源输入、沉积体系、成岩演化等丰富的物理、化学、生物信息,是推动现代成岩作用理论发展、提升沉积盆地成岩体系认知的重要抓手。黏土矿物内层包膜的聚集和生长存在泥质絮凝、先存黏土环边转化、机械渗滤和生物诱导等多种方式,并以后两种常见,但其是否具有普适性及具体作用机理和过程尚需深入论证。在成岩环境主导下,孔隙衬里、孔隙充填状黏土矿物的生长—转化过程与成岩体系内流体—岩石作用的发生存在物质依赖和空间竞争的关系,并反向影响介质条件。

(2)不同类型、含量和生长阶段的黏土矿物对砂岩储层品质存在消极和相对积极的双重影响,且在后期开发过程中造成不同类型和程度的储层损害。查明黏土包膜的生长机理、转化过程、护孔效应是解析砂岩成储效应的重要研究方向,也是油气勘探开发实践中不可或缺的一环。

(3)瞄准致密砂岩、页岩等非常规油气勘探开发战略需求,系统研究盆地尺度的流体—岩石相互作用及其时空演变机制是精细刻画黏土矿物生长过程与控储作用的基础和发展方向,原位微区分析技术提供了有效途径和重要驱动。

致谢 本文的撰写和笔者的成长,均离不开青岛海洋地质研究所何起祥研究员、中国石油大学(北京)冯增昭教授的悉心指点,谨以此文对两位先生的先后离世表示深切哀悼与追思!我们当以先辈为榜样,肩负探矿报国的使命砥砺前行!

猜你喜欢
伊利石高岭石绿泥石
绿泥石弱酸性解堵剂的开发与性能评价
伊利石对Cd(Ⅱ)的吸附特性研究
伊利石有机改性研究进展*
八一
八一
二氧化碳在高岭石孔隙中吸附的分子模拟
伊利石矿物的应用简述
内蒙高岭石烧结性能与应用试验
改性伊利石在天然橡胶中的应用研究
高岭石电子结构的密度泛函理论研究