2类氨氧化菌的生态特性及其应用研究进展

2016-10-24 05:53胡勇有
关键词:厌氧氨古菌硝化

阎 佳, 胡勇有*

(1. 华南理工大学轻工科学与工程学院,制浆造纸工程国家重点实验室, 广州 510006;2. 华南理工大学环境与能源学院,工业聚集区污染控制与生态修复教育部重点实验室,广州 510006)



2类氨氧化菌的生态特性及其应用研究进展

阎佳1,2, 胡勇有1,2*

(1. 华南理工大学轻工科学与工程学院,制浆造纸工程国家重点实验室, 广州 510006;2. 华南理工大学环境与能源学院,工业聚集区污染控制与生态修复教育部重点实验室,广州 510006)

氮素作为组成生物体的重要元素,一直以其独特的方式在自然界中循环. 经典氮循环理论认为细菌的好氧氨氧化是氧化氨氮的唯一途径,然而,随着生物技术的发展,新的氮循环途径被不断发现,其中的古菌好氧氨氧化以及厌氧氨氧化过程,由于其突出的生态及工程应用重要性,成为学术界的研究热点. 文章综述氮循环新途径中的厌氧氨氧化以及古菌好氧氨氧化过程的发现及研究现状,并进一步探讨了这2类氨氧化菌的研究及应用前景.

氨氮; 好氧氨氧化古菌; 厌氧氨氧化菌

氮是生物组成的重要元素亦称“氮素”. 氮素能以多种价态、多种形态存在(如氨氮、氮气、亚硝酸盐氮、硝酸盐氮、氮氧化物、有机氮等),并在不同价态、形态间相互转化,构成氮循环过程[1]. 氮循环过程主要由微生物驱动,传统生物氮循环理论认为,在好氧条件下,好氧氨氧化细菌(aerobic Ammonia-Oxi-dizing Bacteria, AOB)先后在氨单加氧酶(Ammonia monooxgenase, AMO)和羟氨氧还酶(Hydroxylamine oxioreducatase, HAO)作用下,将异化过程和固氮过程所产生的氨氮经羟氨氧化为亚硝酸盐氮,并在亚硝酸盐氧化菌(aerobic Nitrite Oxidizing Bacteria, NOB)的硝酸盐氧还酶(Nitrate Oxidoreductase, NxR)作用下进一步氧化为硝酸盐氮;在厌氧条件下,再经过异养反硝化(Denitrfication, Den)过程,硝酸盐氮依次形成亚硝酸盐、氮氧化物,最终还原为氮气释放到大气中,催化该过程的生物酶包括硝酸盐还原酶(Nitrate Reductase, Nar)、亚硝酸盐还原酶(Nitrite Reductase, Nir)、一氧化氮还原酶(Nitric Oxide reductase, Nor)以及氧化亚氮还原酶(Nitrous Oxidoreductase, Nor)等.

百年来,生物学家一直认为传统生物氮循环途径是氮循环的唯一途径. 然而,自20世纪90年代以来,新的氮循环途径的发现扩展了人们对氮循环过程的认知,新发现的氮循环途径主要包括厌氧氨氧化、古菌好氧氨氧化、异化硝酸盐还原以及自养反硝化等过程,并形成了复杂的生物氮循环体系(图1). 本文综述了氮循环新途径中的2类氨氧化过程(厌氧氨氧化以及古菌好氧氨氧化)的发现过程及其研究现状,并在我们相关研究的基础上进一步探讨了这2类氨氧化菌的应用现状,并展望了与2类氨氧化菌相关的脱氮新技术的应用前景.

①固氮过程;②细菌好氧氨氧化过程;③好氧亚硝酸盐氧化过程;④硝酸盐还原过程;⑤反硝化过程;⑥同化过程;⑦异化过程;⑧厌氧氨氧化过程;⑨氨的亚硝酸盐异化还原过程;⑩古菌好氧氨氧化过程

图1微生物氮循环

Figure 1Microbial nitrogen cycle

1 古菌好氧氨氧化

1.1细菌的好氧氨氧化过程

早在19世纪末,氨氮的细菌好氧氨氧化过程就已经被发现. 在超过100年的时间里,科学界都认为好氧氨氧化细菌是驱动好氧氨氧化过程的唯一微生物. 常见的好氧氨氧化细菌包括:亚硝化单胞菌(Nitrosomonas),亚硝化球菌(Nitrosococcus)以及亚硝化弧菌(Nitrosospira)[2].

1.2好氧氨氧化古菌的发现

尽管地球上存在着大量的古菌,尤其是在一些极端环境中,但对大多数古菌的生理生态学特性则尚未可知. 直到21世纪初,随着高通量测序技术的发展,研究者们在对古菌宏基因组的研究中发现了疑似氨单加氧酶的基因,并首次提出了好氧氨氧化过程也可能由古菌驱动的假设[3- 4]. 该假设很快被证实,第一株海洋好氧氨氧化古菌(aerobic Ammonia-Oxidizing Archaea, AOA)成功分离,并命名为Nitrosopumilusmaritimus[5],属于泉古菌(Crenarchaeota). 随后,研究者们又陆续在海洋及陆生生态系统中发现了6种好氧氨氧化古菌:CandidatusNitrosocaldus yellowstonii[6],CandidatesNitrososphaera gargensis[7], Nitrososphaera viennensis[8],CandidatesNitrosoarchaeum koreensis[9],CandidatesNitrosotalea devanaterra[10]以及CandidatesNitrosoarchaeum limnia[11-12]. 至此,微生物分类学中1个由好氧氨氧化古菌组成的新菌门Thaumarchaeota诞生[13].

1.3自然界中AOA与AOB

自好氧氨氧化古菌被发现以来,不同生态系统中AOA与AOB数量及其对系统硝化过程相对贡献的研究亦成为热点之一. 在很多海洋生态系统中发现AOA的数量远大于AOB的数量[14-16],但在土壤、沉积物以及海湾生态系统中则以AOB为主[12, 17〗. 值得注意的是上述研究均以DNA中的古菌及细菌amoA基因为目标进行定量,由于DNA的定量技术无法判定微生物是否具有活性、是否表达,因此上述研究仅能了解该区域AOA及AOB的数量信息,而无法判断该区域AOA及AOB对系统硝化过程的相对贡献率. PHYLLIS等[18]在对南太平洋东部热带限氧层(ETSP-OMZ)的研究中发现,古菌amoA基因在数量上大于细菌amoA基因,而其反转录表达则远低于amoA基因,即大多数的好氧氨氧化古菌虽然存在但并无硝化活性. 因此,在对不同生态系统中AOA与AOB对系统硝化过程相对贡献的研究中,应采用能体现AOA与AOB相对活性的检测手段,如反转录定量PCR(Reverse-transcript qPCR)[18]、DNA稳定同位素探测(Stable Isotope Probing, SIP)、CARD-FISH[14, 16]、NanoSIMS[8]、第三代测序技术(Single-cell sequencing)[11]或引入具有特异性/选择性的抑制剂以区分AOA及AOB的活性,如作者之前研究中采用的PTIO[19]、乙炔[20]等.1.4AOA的主要生理生态学特性

细菌与古菌好氧氨氧化除了催化反应进行的微生物种类不同外,其反应代谢途径、微生物基质亲和力以及细胞形态均存在明显差异.

细菌的好氧氨氧化过程: AOB在细菌AMO酶的作用下,先将氨氮氧化为羟氨,羟氨再被HAO氧化为亚硝酸盐. 而对于古菌好氧氨氧化过程,由于AOA中不含HAO基因,因此AOA可能通过某种完全未知酶催化氨氮的氧化[20],或仍通过AMO酶,但AMO酶氧化氨氮时的产物不是羟氨而是其他中间产物,如硝基氢化物(Nitroxyl Hydride, HNO),再通过某种硝基氧还酶(Nitroxyl Oxidoreductase, NXOR)将HNO转化为亚硝酸盐,这一代谢途径所消耗的能量远低于AOB的代谢途径[21].

AOA是目前发现的氨氮基质亲和力最高的微生物之一,其基质半饱和常数仅为132 nmol/L,而常见AOB对氨氮的基质半饱和常数则大于20 μmol/L,这一特性可使得AOA在与AOB的氨氮竞争中处于优势[22]. 此外,AOA体积远小于AOB,相同质量下AOA可提供与基质接触的表面积远大于AOB(图2). 综上所述,较低的能量代谢途径、较高的基质亲和力以及较大的比表面积,可能是使得AOA能在低营养元素的极端环境下生存的重要特性.

A:亚硝化单胞菌(Nitrosomonassp.)[23]208;B:亚硝化弧菌(Nitrospirabockiana)[24]245; C: 亚硝化球菌(NitrosococcusoceaniATCC 19707); D:Nitrosopumilusmaritimus[5]545; E:Nitrososphaeraviennensis[8]8424

图2AOA及AOB的透射电镜照片

Figure 2Transmission micrographs of AOA and AOB

2 厌氧氨氧化

2.1厌氧氨氧化过程的发现

自AOB被发现以来,氨的氧化过程一直被认为只能在好氧环境下完成. 早在1977年就有研究者通过能量计算,预测自然界可能存在厌氧条件下氧化氨氮的微生物[25],然而该微生物一直未能被发现,被称为消失在自然界中的微生物. 直到近20年后,厌氧条件下氨的氧化现象才在处理高氨氮废水的厌氧流化床反应器中被首次发现,并命名该过程为厌氧氨氧化过程(Anaerobic ammonium oxidation, anammox)[26].

厌氧氨氧化反应能在厌氧条件下将氨氮和亚硝酸盐氮按比例转化为氮气及硝酸盐氮[27-28]:NH+4+ 1.32 NO-2+ 0.066 HCO-3+ 0.13 H+→

目前已富集5个属的厌氧氨氧化菌,包括Ca. Brocadia[28-29], Kuenenia[30], Scalindua[31-32], Anammoxoglobus[33]和Jettenia[34],并组成了1个新的厌氧氨氧化菌门Brocadiaceae,依据文献[35]1482建树法绘制基因系统发育树如图3所示.

图3 厌氧氨氧化菌部分16S rRNA(485 bp)基因系统发育树

2.2厌氧氨氧化菌的生理生态学特性

厌氧氨氧化菌为化能自养菌,以二氧化碳作为唯一碳源,通过将亚硝酸盐氧化成硝酸盐来获得生长所需能量,并通过乙酰-CoA途径同化二氧化碳. 近年研究发现,厌氧氨氧化反应其实是三级反应:首先,亚硝酸盐氮在亚硝酸盐还原酶(NirS)作用下被还原为一氧化氮;然后,在联氨合成酶(Hydrazine synthase, Hzs)的作用下将产生的一氧化氮和氨氮合成为联氨;最后,联氨在联氨水解酶(Hao/Hzo)的作用下水解并释放氮气[36- 37]. 催化各反应的关键酶(NirS、Hzs以及Hao/Hzo),已被作为基因标识用于检测不同环境样品厌氧氨氧化菌的存在[18].

厌氧氨氧化菌生长的极为缓慢其倍增周期为10~12 d[28,38],且严格厌氧,仅当1 μmol/L氧气存在时厌氧氨氧化菌的活性会被抑制[39],因此,富集厌氧氨氧化菌需要气密性好、微生物截留能力较强的反应器,且富集周期较长. 富集厌氧氨氧化菌的常用反应器包括:SBR(Sequencing Batch Reactor)[33, 40]、UASB(Up-flow Anaerobic Sludge Bed)[41]、MBBR(Moving Bed Biofilm Reactor)[42]以及MBR(Membrane Blo-Reator)[43],本课题组亦采用SBR富集厌氧氨氧化菌[44- 45]厌氧氨氧化菌对氨氮及亚硝酸盐氮均具有极高的亲和力,其基质半饱和常数低于5 μmol/L[28,46].

目前所发现的厌氧氨氧化菌均为类球形,直径0.8~1.1 μm,部分带有菌毛,具有独特的细胞内膜结构,细胞由外而内被2层独立的细胞膜分割为3部分[49]:最外层为外室细胞质,由细胞质膜所包裹;中间层是核糖细胞质,位于细胞质膜及细胞质内膜之间,该层中包括了厌氧氨氧化菌的DNA、核糖体以及所储存的糖原;最内层为厌氧氨氧化体,由厌氧氨氧化体膜所包围. 厌氧氨氧化体是厌氧氨氧化菌特有的结构,其占据了细胞超过50%的体积,被认为是厌氧氨氧化反应代谢过程的发生地[47-48]. 此外,厌氧氨氧化体的膜脂具有独特的梯烷(Ladderane)结构,该结构由3~5个线性相连的环丁烷构成[49],厌氧氨氧化菌的独特梯烷膜脂结构已作为检测样品中厌氧氨氧化的结构标识[19,50].

2.3厌氧氨氧化菌在自然界中的作用

由于厌氧氨氧化菌对氨氮及亚硝酸盐氮的极高亲和力,远高于除AOA外的其他氮循环微生物,这一特性有利于厌氧氨氧化菌在低基质浓度环境下生存. 研究发现,厌氧氨氧化菌广泛存在于淡水、土壤、湿地以及海洋等生态系统中,除Scalindua菌属仅存在于海洋环境外[15-16, 18, 32],其余菌属仅存在于淡水、湿地以及土壤生态系统中[51],厌氧氨氧化过程对于地球氮循环过程具有重要意义. 更有研究认为,海洋中近50%的氮释放都与厌氧氨氧化过程相关[52].

3 氨氧化菌间的协作及其应用

3.1脱氮工艺

厌氧氨氧化反应被誉为可实现的最短的脱氮途径,且由于厌氧氨氧化反应具有无需外加碳源、产泥量少污泥处置费用低、可降低90%运行费用等经济优势[53],在工程应用领域一直备受关注. 而废水中氮素主要以氨氮的形式存在,无法提供厌氧氨氧化反应所需的另一基质亚硝酸盐氮,因此需要寻求为厌氧氨氧化反应提供亚硝酸盐的过程与之协同作用. 从氮的循环途径可知,氨的好氧氧化以及硝酸盐的异化还原均是提供亚硝酸盐氮的有效途径.

3.1.1氨氧化菌间的协同作用好氧氨氧化菌与厌氧氨氧化菌间的协同作用作为新的生物脱氮技术在废水生物脱氮领域发展出了多种不同的新工艺,可分为两级厌氧氨氧化反应及单级厌氧氨氧化反应系统. 两级厌氧氨氧化反应系统SHARON-anammox是首先在SHARON反应器中实现亚硝酸盐积累,并将氨氮﹕亚硝酸盐氮约为1∶1的废水送入后续厌氧氨氧化反应器. SHARON-anammox工艺分别在2个反应器中实现部分硝化和厌氧氨氧化,能优化2类细菌的生存环境,稳定系统性能[54]. 全球首座生产规模运行的SHARON-anammox系统建立在荷兰鹿特丹,用以处理市政污水厂污泥消化液[38]. 单极厌氧氨氧化反应系统CANON(Completely Autotrophic Nitrogen removal Over Nitrite),亦称为单极自养脱氮系统,通过控制曝气量,使好氧氨氧化菌同步消耗所提供的氧气并为厌氧氨氧化菌提供亚硝酸盐,由于氧气被消耗使得反应器始终稳定在限氧条件下,可实现好氧与厌氧氨氧化菌在单一反应器中的协调生长[55-56]. 与两级厌氧氨氧化反应系统相比,单极自养脱氮系统所需的体积更小,建设成本低,且在好氧氨氧化菌为厌氧氨氧化菌提供亚硝酸盐氮的同时,厌氧氨氧化菌亦消除了亚硝酸盐积累对好氧氨氧化菌的毒性[56-57],充分体现好氧氨氧化菌与厌氧氨氧化菌间协同作用的优势. 由于单极自养脱氮系统的以上优势,目前全球已知的稳定运行的生产规模厌氧氨氧化反应系统超过40座,其中仅4座两级厌氧氨氧化反应系统[38, 58]. 厌氧氨氧化工艺已被成功用于不同类型高氨氮市政污水及工业废水的处理,如皮革、食品、发酵以及酿酒废水等[59],其中去除负荷最高的处理系统可达到11 000 kgN/d[60].

尽管两级及单级厌氧氨氧化反应系统已得到应用并积累很多相关知识和经验,但厌氧氨氧化反应系统的广泛应用和稳定运行仍受到多重因素的制约:(1)好氧及厌氧氨氧化菌均为自养菌,污泥生长缓慢、易流失;(2)实际废水水质的波动严重影响系统的稳定[38];(3)对于单级厌氧氨氧化反应系统,当氧气微量残留时即对厌氧氨氧化菌的活性抑制,难以控制好氧与厌氧氨氧化菌的平衡生存,且氧气过量会刺激系统中亚硝酸盐氧化菌的生长[61];(4)对于两级厌氧氨氧化反应系统,过高的亚硝酸盐积累会同时抑制好氧[62]及厌氧氨氧化菌的活性[28],亚硝酸盐不足则会降低系统整体脱氮效率,使出水氨氮浓度升高.

3.1.2氨氧化菌与反硝化菌间的协同作用好氧及厌氧氨氧化菌均为自养菌,当废水中有大量有机物存在时其活性受到抑制,因此好氧及厌氧氨氧化菌协同的脱氮技术仅适合处理高氮低碳废水. 本课题组朱静平等[45]在SBR反应器中研究了有机碳源环境下,成功启动反硝化协同厌氧氨氧化协同系统,并研究了该体系中好氧氨氧化、厌氧氨氧化及反硝化反应的反应顺序. 同步硝化反硝化厌氧氨氧化工艺(Simultaneous partial Nitrification, Anammox and Denitrification,SNAD)是发展于单极自养脱氮系统且又适合于处理含有机物高氮废水的工艺,如垃圾渗滤液[63]、污泥消化液[64]等. 同步硝化反硝化厌氧氨氧化工艺中的反硝化菌可去除有机物,防止有机物对好氧及厌氧氨氧化菌活性的抑制,同时反硝化菌所产生亚硝酸盐氮可作为厌氧氨氧化反应的基质. 由于SBR反应器有利于维持较高的污泥浓度、富集生长缓慢的自养菌、实现多种微生物协同共生,大多数的SNAD系统采用SBR反应器[64-65].

好氧氨氧化菌、厌氧氨氧化菌以及反硝化菌在同一系统中相互协作,但也相互竞争,尤其是有机物的存在更加速了异养反硝化菌的生长. 因此,要实现SNAD系统的温度运行非常不易,需对反应体系中的DO(dissolved oxygen)、HRT(hydraulic retention time)、pH、C/N等参数进行严格控制[66-67].3.2N2O的释放

N2O的温室效应是CO2的300倍,占人为温室气体排放的7.9%[67]. 由于N2O既是反硝化过程的中间产物(亚硝酸盐的异化还原),也是细菌硝化过程的副产物(亚硝酸盐的还原或羟氨的氧化),因此,传统硝化及反硝化脱氮工艺均释放大量的N2O[68]. 由于不同污水处理厂在工艺设计、运行参数以及N2O检测等方面的差异,文献中报道的污水处理厂N2O排放量差异较大,占总氮的0%~25%[68-69].

由本文2.2节中可知,N2O既不是厌氧氨氧化反应的中间产物也不是副产物,故厌氧氨氧化反应不产生N2O,以NO及氨氮为基质的厌氧氨氧化反应器中已被证实几乎不产生N2O[70]. 因此,好氧氨氧化菌与厌氧氨氧化菌间协同的脱氮工艺或可减少N2O温室气体的排放,实现节能减排. 已报道的单级厌氧氨氧化反应系统N2O排放量占总氮的1.3%~2.4%[71-72],两级厌氧氨氧化反应系统中厌氧氨氧化反应器N2O排放量占总氮的0.6%~1.0%[73-74],厌氧氨氧化反应器中少量的N2O排放主要来自污泥中存在的非厌氧氨氧化菌(如好氧氨氧化细菌、反硝化菌),均低于传统硝化反硝化工艺所排放的N2O. 因此,实现以厌氧氨氧化脱氮工艺的大规模应用有利于削减全球N2O排放量,减弱全球温室效应.

4 现有研究的不足与展望

(1)AOA的应用前景不明:好氧氨氧化古菌普遍存在于现有各种市政污水及工业废水处理系统中,但在大多数污水处理系统中AOA的数量远低于AOB,且AOA在该硝化系统的活性也尚未探明. 而研究发现AOA活性则受到多种因素的影响,包括氨氮浓度、溶氧浓度以及搅拌方式等. 在实验室研究条件下,已证实了基于古菌好氧氨氧化与厌氧氨氧化协同作用的单极自养脱氮系统,且由于好氧氨氧化古菌及厌氧氨氧化菌均就具有较高的基质亲和力,使得系统出水氨氮浓度极低(<30 μmol/L),而传统基于细菌好氧氨氧化与厌氧氨氧化协同作用的单极自养脱氮系统其出水一般高于0.5 mmol/L. 因此,在将来的研究中,若能探明调控AOA活性的关键控制因素及方法,不仅可以作为改造现有硝化系统的重要技术手段,更有望将基于古菌好氧氨氧化与厌氧氨氧化协同作用的单极自养脱氮技术用于废水的氨氮深度处理.

(2)低温环境下脱氮效率低:低温(<15 ℃)会抑制好氧及厌氧氨氧化菌的活性,且低温条件亚硝酸盐氧化菌快于好氧氨氧化菌,易造成亚硝酸盐氧化菌与厌氧氨氧化菌争夺基质. 因此,目前已应用的两级或单级厌氧氨氧化反应系统均在较高温度下运行(25~30 ℃). 而实际废水的温度仅为15~20 ℃之间,实际应用是需耗费大量资源已升高废水温度. 然而,最近有研究报道通过严格控制溶解氧及逐级降温的驯化方式,可使单级厌氧氨氧化反应系统稳定运行在12 ℃,好氧及厌氧氨氧化菌的活性未受抑制,且亚硝酸盐氧化菌保持无活性状态. 这一成果若能应用于将来的应用中,将大大降低厌氧氨氧化系统的运行费用,这无疑将是生物脱氮技术领域的另一大进展.

(3)厌氧氨氧化污泥难富集难保存:尽管厌氧氨氧化脱氮工艺已研究多年,且已在多地成功应用,然而,厌氧氨氧化污泥难富集、启动周期长等问题始终无法解决,已成为限制该技术大规模应用的瓶颈. 研究表明,接种部分成熟厌氧氨氧化污泥可实现厌氧氨氧化过程的快速启动,因此,如何实现厌氧氨氧化菌的成功保存可成为突破厌氧氨氧化技术大规模应用的关键. 研究发现,低温(4 ℃)条件下可实现厌氧氨氧化菌的饥饿保存,复温后可实现厌氧氨氧化菌活性的快速恢复. 利用该技术可将富集的厌氧氨氧化污泥低温保存,再接种到需要启动的厌氧氨氧化池中,可解决厌氧氨氧化污泥难富集、启动周期长的问题.

[1]POPA R, CAPONE D G, FLOOD B, et al. Follow the Nitrogen [J]. Science, 2006, 312(5774): 708-709.

[2]HEAD I M, HIORNS W D, EMBLEY T M, et al. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences [J]. Journal of General Microbiology, 1993, 139(3): 1147-1153.

[3]VENTER J C, REMINGTON K, HEIDELBERG J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea [J]. Science, 2004, 304(5667): 66-74.

[4]TREUSCH A H, LEININGER S, KLETZIN A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling [J]. Environmental Microbiology, 2005, 7(12): 1985-1995.

[5]MARTIN K N, BERNHARD A E, TORRE J R D L, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon [J]. Nature, 2005, 437(7058): 543-546.

[6]DE LA TORRE J R, WALKER C B, INGALLS A E, et al. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol [J]. Environmental Microbiology, 2008, 10(3): 810-818.

[7]HATZENPICHLER R, LEBEDEVA E V, SPIECK E, et al. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 2134-2139.

[8]MARIA T, MICHAELA S, ANJA S, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8420-8425.

[9]KIM B K, JUNG M Y, YU D S, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1 [J]. Journal of Bacteriology, 2011, 193(19): 5539-5540.

[10]LAURA E L M, KILIAN S, ANDREAS V, et al. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil [J]. Proceedings of the National Aca-demy of Sciences of the United States of America, 2011, 108(38): 15892-15897.

[11]BLAINEY P C, MOSIER A C, POTANINA A, et al. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis [J]. Plos One, 2011, 6(2): 16626-16637.

[12]ANNIKA C M, FRANCIS C A. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary [J]. Environmental Microbiology, 2008, 10(11): 3002-3016.

[13]BROCHIER-ARMANET C, BOUSSAU B, GRIBALDO S, et al. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota[J]. Nature Reviews Microbiology, 2008, 6(3): 245-252.

[14]CORNELIA W, BEN A, COOLEN M J L, et al. Archaeal nitrification in the ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12317-12322. [15]MINCER T J, CHURCH M J, TAYLOR L T, et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre [J]. Environmental Microbiology, 2007, 9(5): 1162-1175.

[16]LAM P, JENSEN M M, LAVIK G, et al. From the cover: linking crenarchaeal and bacterial nitrification to anammox in the Black Sea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 7104-7109. [17]SANTORO A E, FRANCIS C A, DE SIEYES N R, et al. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary [J]. Environmental Microbiology, 2008, 10(4): 1068-1079.

[18]PHYLLIS L, GAUTE L, JENSEN M M, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4752-4757.

[19]ZHANG L, WANG M, PROSSER J, et al. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest [J]. Fems Microbiology Ecology, 2009, 70(2): 208-217.

[20]HATZENPICHLER R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea [J]. Applied & Environmental Microbiology, 2012, 78(21): 7501-7510.

[21]WALKER C B, JR D L T, KLOTZ M G, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8818-8823.

[22]WILLM M H, BERUBE P M, HIDETOSHI U, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria [J]. Nature, 2009, 461(7266): 976-979.

[23]SATOH K, TAKIZAWA R, SARAI M, et al. Two kinds of ammonia-oxidizing bacteria isolated from biologically deodorizing plants in cold district [J]. Journal of Bioscience & Bioengineering, 2004, 98(3): 207-210.

[24]LEBEDEVA E V, ALAWI M, MAIXNER F, et al. Physiological and phylogenetical characterization of a new lithoautotrophic nitrite-oxidizing bacterium ‘Candidatus Nitrospira bockiana’ [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 242-250.

[25]KLOTZ M G, ARP D J, CHAIN P S G, et al. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707 [J]. Applied & Environmental Microbiology, 2006, 72(9): 6299-6315.

[26]BRODA E. Two kinds of lithotrophs missing in nature [J]. Zeitschrift Für Allgemeine Mikrobiologie, 1977, 17(6): 491-493.

[27]MULDER A, GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. Fems Microbiology Ecology, 1995, 16(3): 177-184. [28]PAS-SCHOONEN K T V D, LOGEMANN S, MUYZER G, et al. Missing lithotroph identified as new planctomycete [J]. Nature, 1999, 400(6743): 446-449.

[29]KARTAL B, NIFTRIK L V, SLIEKERS O, et al. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria [J]. Reviews in Environmental Science & Biotechnology, 2004, 3(3): 255-264.

[30]SCHMID M, SCHMITZ-ESSER S, JETTEN M, et al. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection [J]. Environmental Microbiology, 2001, 3(7): 450-459.

[31]SCHMID M, WALSH K, WEBB R, et al. Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria [J]. Systematic & Applied Microbiology, 2003, 26(4): 529-538.

[32]KUYPERS M M M, SLIEKERS A O, LAVIK G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea [J]. Nature, 2003, 422(6932): 608-611.

[33]KARTAL B, KUYPERS M M M, LAVIK G, et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium [J]. Environmental Microbiology, 2007, 9(3): 635-642.

[34]QUAN Z X, RHEE S K, ZUO J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor [J]. Environmental Microbiology, 2008, 10(11): 3130-3139.

[35]SCHMID M C, RISGAARD-PETERSEN N, VOSSENBERG J V D, et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity [J]. Environmental Microbiology, 2007, 9(6): 1476-1484.

[36]STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J]. Nature, 2006, 440(7085): 790-794.

[37]KARTAL B, MAALCKE W J, ALMEIDA N M D, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7371): 127-130.

[38]STAR W R L V D, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Research, 2007, 41(18): 4149-4163.

[39]STROUS M, GERVEN E V, KUENEN J G, et al. Effects of aerobic and microaerobic conditions on anaerobic Ammonium-Oxidizing (Anammox) sludge [J]. Applied & Environmental Microbiology, 1997, 63(6): 2446-2448.

[40]STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorga-nisms [J]. Applied Microbiology & Biotechnology, 1998, 50(5): 589-596.

[41]TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge [J]. Water Research, 2011, 45(1): 135-144.

[42]MALOVANYY A, YANG J, TRELA J, et al. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment[J]. Bioresource Technology, 2015, 180(1): 144-153.

[43]YU T, GAO D W, YUAN F, et al. Impact of reactor configuration on anammox process start-up: MBR versus SBR [J]. Bioresource Technology, 2012, 104(1): 73-80.

[44]梁辉强, 胡勇有, 雒怀庆. 厌氧序批式反应器的厌氧氨氧化工艺启动运行 [J]. 工业用水与废水, 2005, 36(5): 39-44.

LIANG H Q, HU Y Y, LUO H Q. Start-up of anaerobic ammonium oxidation process in anaerobic sequencing batch reactor [J]. Industrial Water & Wastewater, 2005, 36(5): 39-44.

[45]朱静平, 胡勇有, 闫佳. 有机碳源条件下厌氧氨氧化ASBR反应器中的主要反应 [J]. 环境科学, 2006, 27(7): 1353-1357.

ZHU J P, HU Y Y, YAN J. Main reactions in anaerobic ammonium oxidation reactor under organic carbon condition [J]. Environmental Science, 2006, 27(7): 1353-1357.

[46]YAN J. Interactions of marine nitrogen cycle microorga-nisms [M]. [S.l.]: Radboud Unirersiteit Nijmegen, 2012.

[47]VAN NIFTRIK L, GEERTS W J, VAN DONSELAAR E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins [J]. Journal of Bacteriology, 2008, 190(2): 708-717.

[48]VAN NIFTRIK L, VAN HELDEN M, KIRCHEN S, et al. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium Candidatus Kuenenia stuttgartiensis[J]. Molecular Microbiology, 2010, 77(3): 701-715.

[49]DAMSTÉ J S, SCHOUTEN S, HOPMANS E C, et al. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. Journal of Lipid Research, 2002, 43(10): 1641-1651.

[50]RATTRAY J E, VOSSENBERG J V D, HOPMANS E C, et al. Ladderane lipid distribution in four genera of anammox bacteria[J]. Archives of Microbiology, 2008, 190(1): 51-66.

[51]HIRSCH M D, LONG Z T, SONG B. Anammox bacterial diversity in various aquatic ecosystems based on the detection of hydrazine oxidase genes (hzoA/hzoB) [J]. Microbial Ecology, 2011, 61(2): 264-276.

[52]BRANDES J A, DEVOL A H, CURTIS D. New developments in the marine nitrogen cycle [J]. Chemical Reviews, 2007, 107(2): 577-589.

[53]JETTEN M S M, HORN S J, LOOSDRECHT M C M V. Towards a more sustainable municipal wastewater treatment system [J]. Water Science & Technology, 1997, 35(9): 171-180.

[54]DONGEN U V, JETTEN M S M, LOOSDRECHT M C M V. The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater [J]. Water Science & Technology, 2001, 44(1): 153-160.

[55]THIRD K A, SLIEKERS A O, KUENEN J G, et al. The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria [J]. Systematic & Applied Microbiology, 2001, 24(4): 588-596.

[56]DERWORT N, GOMEZ J L, STROUS M. Completely autotrophic nitrogen removal over nitrite in one single reactor [J]. Water Research, 2002, 36(10): 2475-2482.

[57]YAN J, CAMP H J, JETTEN M S S, et al. Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen [J]. Systematic & Applied Microbiology, 2010, 33(7): 407-415.

[58]DESLOOVER J, DE CLIPPELEIR H, BOECKX P, et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions [J]. Water Research, 2011, 45(9): 2811-2821.

[59]VLAEMINCK S E, DE CLIPPELEIR H, VERSTRAETE W. Microbial resource management of one-stage partial nitritation/anammox [J]. Microbial Biotechnology, 2012, 5(3): 433-448.

[60]HU Z, LOTTI T, VAN LOOSDRECHT M, et al. Nitrogen removal with the anaerobic ammonium oxidation process [J]. Biotechnology Letters, 2013, 35(8): 1145-1154. [61]ABMA W R, DRIESSEN W, HAARHUIS R, et al. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater [J]. Water Science & Technology, 2010, 61(7): 1715-1722.

[62]MOSQUERA-CORRAL A, CAMPOS F G L, MENDEZ R. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds [J]. Process Biochemistry, 2005, 40(9): 3109-3118.

[63]WANG C C, LEE P H, KUMAR M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant [J]. Journal of Hazardous Materials, 2009, 175(3): 622-628.

[64]MICHELA L, JIA Y, HAAIJER S C M, et al. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor [J]. Frontiers in Microbiology, 2014, 5(2): 28-40.

[65]LAN C J, KUMAR M, WANG C C, et al. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor [J]. Bioresource Technology, 2011, 102(9): 5514-5519.

[66]KELUSKAR R, NERURKAR A, DESAI A. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry [J]. Bioresource Technology, 2013, 130(1): 390-397.

[67]LEMKE P,REN J, ALLEY R B,et al. Observations: changes in snow, lce and frozen ground[M].[S.l.]:CRC-Antarctic Climate & Ecosystems,2007:337-383.

[68]KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment [J]. Water Research, 2009, 43(17): 4093-4103.

[69]LAN Y, YE L, PAN Y, et al. Nitrous oxide emissions from wastewater treatment processes [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1593): 1265-1277.

[70]KARTAL B, TAN N C, VAN DE BIEZEN E, et al. Effect of nitric oxide on anammox bacteria [J]. Applied & Environmental Microbiology, 2010, 76(18): 6304-6306.

[71]NORBERT W, IMRE T, SUDHIR M, et al. Gaseous nitrogen and carbon emissions from a full-scale deammonification plant [J]. Water Environment Research: A Research Publication of the Water Environment Federation, 2010, 82(2): 169-175.

[72]CASTRO-BARROS C M, DAELMAN M R J, MAMPAEY K E, et al. Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor [J]. Water Research, 2015, 68(1): 793-803.

[73]KAMPSCHREUR M J, STAR W R L V D, WIELDERS H A, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment [J]. Water Research, 2008, 42(3): 812-826.

[74]DE GRAAFF M S, TEMMINK H, ZEEMAN G, et al. Autotrophic nitrogen removal from black water: calcium addition as a requirement for settleability [J]. Water Research, 2011, 45(1): 63-74.

【中文责编:成文 英文责编:李海航】

收稿日期: 2016-04-05《华南师范大学学报(自然科学版)》网址:http://journal.scnu.edu.cn/n

基金项目: 国家自然科学基金项目(11547173);广东省自然科学基金项目(2016A030313436);广东高校优秀青年创新人才培育项目(2015KQNCX023)

*通讯作者:张丹伟,讲师,Email: zdanwei@126.com;曹帅,讲师,Email: shuaicao2004@163.com.

Abstract: The elementary excitations in a quasi-one-dimensional synthetic spin-orbit-coupled Bose-Einstein condensate are investigated in this paper. With the mean-field approximation and the Bogoliubov approach, the excitation spectrum of the atomic condensate in the zero-momentum and plane-wave phases is calculated, respectively, which depend on the Raman coupling strength. It is shown that the two branches of the excitation spectrum in zero-momentum phase both exhibit symmetry structure. In contrast, the excitation spectrum exhibits roton minimum structure in the plane-wave phase for small Raman coupling strength, which provides the onset of the phase transition to the stripe phase. It is also shown that the sound speed of the low-frequency excitations decreases sharply and vanishes near the phase transition between the plane-wave and zero-momentum phases. This work gives comprehensive analysis of novel properties of elementary excitations in a synthetic spin-orbit-coupled atomic condensate, which may provide theoretical support for experimental studies on this new kind of many-body system.

Key words: excitations; excitation spectrum; Bose-Einstein condensate; synthetic spin-orbit-coupling; Bogoliubov approach

Chinese library classification:O469Document code:AArticle ID: 1000-5463(2016)04-0010-06

Eco-Physiology and Research Progress of Two Ammonium Oxidizing Microbes

YAN Jia1,2, HU Yongyou1,2*

(1.State Key Laboratory of Pulp and Paper Engineering, School of Light Industrial Science and Engineering, South China University of Technology,Guangzhou 510006, China; 2. The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education,School of Environment and Energy, South China University of Technology, Guangzhou 510006, China)

Nitrogen is one of the most important elements for organisms, which is cycling in a special way in nature. Traditional nitrogen cycle was believed to be the only way for nitrogen conversion. However, with the development of biotechnology, new nitrogen conversion pathways were discovered, which becomes hot points for researchers. Based on the researches of authors, it is summarized about the discovery and research status of anaerobic ammonium oxidation (anammox) and archaeal aerobic ammonia-oxidation processes. Moreover, future investigation and application for anaerobic ammonium oxidation and archaeal aerobic ammonia-oxidation processes were also overviewed.

ammonium; aerobic ammonia-oxidizing archaea; anaerobic ammonium oxidizing bacteria

Elementary Excitations in A Synthetic Spin-Orbit-Coupled Bose-Einstein Condensate

ZHANG Danwei1*, CAO Shuai2*

(1.School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;2. Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China)

2015-10-12 《华南师范大学学报(自然科学版)》网址:http://journal.scnu.edu.cn/n

博士后科学基金项目 (2013M531852, 2014T70809);华南理工大学制浆造纸工程国家重点实验室开发基金项目(201357)

胡勇有,教授,Email: ppyyhu@scut.edu.cn.

Q949.3

A

1000-5463(2016)04-0001-09

猜你喜欢
厌氧氨古菌硝化
不同pH和氧气条件下土壤古菌与海洋古菌的竞争适应机制*
变油为气,“榨干”废弃油田
海洋古菌
苯酚对厌氧氨氧化颗粒污泥脱氮性能抑制作用的研究
丙酸盐对厌氧氨氧化除氮性能及群落结构的影响
MBBR中进水有机负荷对短程硝化反硝化的影响
抗生素对厌氧氨氧化颗粒污泥脱氮性能的影响
脱氮菌Flavobacterium SP.FL211T的筛选与硝化特性研究
厌氧氨氧化与反硝化耦合脱氮除碳研究Ⅰ:
海水反硝化和厌氧氨氧化速率同步测定的15N示踪法及其应用