高相干度中红外超连续谱光源的研究

2017-05-11 01:31别业广曾言杨张永成纯富欧艺文湖北工业大学理学院湖北武汉430068太阳能高效利用湖北省协同创新中心湖北工业大学湖北武汉430068
湖北大学学报(自然科学版) 2017年3期

别业广,曾言,2,杨张永,2,成纯富,2,欧艺文,2(. 湖北工业大学理学院, 湖北 武汉 430068;2. 太阳能高效利用湖北省协同创新中心(湖北工业大学),湖北 武汉 430068)



高相干度中红外超连续谱光源的研究

别业广1,曾言1,2,杨张永1,2,成纯富1,2,欧艺文1,2
(1. 湖北工业大学理学院, 湖北 武汉 430068;2. 太阳能高效利用湖北省协同创新中心(湖北工业大学),湖北 武汉 430068)

选用全波段正常色散As2S3光子晶体光纤作为非线性介质来消除反常色散区中孤子分裂引起的调制不稳定性所造成的超连续谱相干特性的恶化问题.利用分步傅里叶法数值模拟超短激光脉冲在全波段正常色散As2S3光子晶体光纤中的非线性传输和中红外超连续谱的产生.分析脉宽、传输距离、入射峰值功率和初始啁啾对中红外超连续谱光源的带宽、相干特性和平坦度的影响.通过优化泵浦激光参数和光纤参量,在最佳负啁啾Cp=-4、脉宽为50 fs、中心波长为2 800 nm、入射峰值功率为100 W和光纤长度为20 cm时,获得3 dB带宽高达2 484 nm的中红外超连续谱,且具有良好相干度和平坦度.关键词:光纤光学;As2S3光子晶体光纤;中红外超连续谱光源;相干特性

0 引言

1 理论模型

为研究全波段正常色散As2S3光子晶体光纤中超连续谱光源的产生及其相干特性,本文中采用分步傅里叶法数值求解广义非线性薛定谔方程[17].

(1)

图1 As2S3光子晶体光纤色散曲线

式中,A表示脉冲慢变包络振幅,z是沿光纤方向的传输距离,βm表示光纤的色散效应(m表示色散阶数),τ=t-vg是以群速率为vg参考系的时间参量,τ表示时延,α和γ分别为光纤的传输损耗和非线性系数,R(t)=(1-fR)δ(t)+fRhR(t)为拉曼响应函数,fR表示延时拉曼响应对非线性极化的贡献,约为0.18,hR(t)为拉曼响应函数,其表达式为[17]:

(2)

式中,参量τ1和τ2是2个可调节的参量,其值分别为15.5fs和230.5fs[14].本文中采用的高非线性光纤为全波段正常色散的As2S3光子晶体光纤,其色散曲线如图1所示[ 16].由图1可以看出,该光纤在2 800 nm处色散值趋于零,表明2 800 nm处色散效应较弱.研究表明,色散效应越弱越有利于高相干度超连续谱的产生[18],故本文中的泵浦波长选为2 800 nm.由于2 800 nm处色散效应较弱,本文中只需考虑到六阶,更高阶的色散效应可忽略,在2 800 nm处,色散系数分别为β2=6.927 6×10-5ps2m-1,β3=-3.598 04×10-6ps3m-1,β4=6.577 56×10-7ps4m-1,β5=2.828 96×10-9ps5m-1,β6=2.828 96×10-13ps6m-1,非线性系数为γ=1 642 W-1km-1.由于所用光纤长度较短,光纤的传输损耗可以忽略不计.研究表明,当泵浦脉冲的谱宽大于6 nm时,高斯白噪声模型较量子噪声模型更好[19],故本文中采用高斯白噪声模型,即在入射的高斯脉冲中引入高斯白噪声,因此泵浦脉冲的表达式为:

(3)

(4)

图4 传输距离对超连续谱(a)及其相干特性(b)的影

图5 λ射峰值功率对超连续谱(a)及其相干特性(b)的影

图6 初始啁啾对超连续谱(a)及其相干特性(b)的影

2 模拟结果与分析

为了进一步改善超连续谱的平坦度和相干特性,我们研究入射峰值功率为100 W及其他参数与图5相同条件下初始啁啾对超连续谱平坦度和相干性的影响,研究结果如图6所示.由图6(b)可以看出,正啁啾可以改善超连续谱的相干特性,但无法改善超连续谱的平坦度(见图6(a)),而负啁啾不但可以改善超连续谱的相干性,还可改善其平坦度.在最佳负啁啾Cp=-4处,3 dB带宽达2 484 nm,超连续谱的平坦度小于11 dB,与无啁啾时的平坦度(小于14.9 dB)相比,改善3.9 dB.这主要是由于负啁啾可以抵消自相位调制产生的正啁啾[21-23],从而使超连续谱逐渐压缩(见图7(a)),随着传输距离的增大,初始负啁啾不足以抵消自相位调制产生的正啁啾,从而使超连续谱逐渐展宽(见图7(a)).即初始负啁啾对自相位调制效应有一定的抑制作用,从而使超连续谱的平坦度得到一定的改善.

图7 负啁啾对超连续谱的影响(a) 频谱演变图;(b) 时域演变图

3 结论

采用分步傅里叶算法数值模拟超短激光脉冲在全波段正常色散.光子晶体光纤中的非线性传输和中红外超连续谱的产生,并利用一阶相干因子分析脉宽、传输距离、入射峰值功率和初始啁啾对中红外超连续谱相干特性的影响.研究表明,脉宽越短,越有利于高相干度高平坦度中红外超连续谱的产生;传输距离越短,相干特性和平坦度越好,但带宽受限.增加峰值功率可显著改善超连续谱的带宽,但相干特性和平坦度因受色散效应和自变陡效应的影响而急剧退化;负啁啾可改善超连续谱的平坦度和相干特性,而正啁啾只能改善超连续谱的相干特性.在最佳负啁啾Cp=-4、脉宽为50 fs、入射峰值功率为100 W和光纤长度为20 cm时,获得3 dB带宽高达2 484 nm、平坦度小于11 dB的高相干度的超连续谱.研究结果对于如何优化光纤参数和泵浦激光参数以获得高质量的中红外超连续谱具有重要意义.

[1] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 114-119.

[3] Brilland L, Smektala F, Renversez G, et al. Fabrication of complex structures of holey fibers in chalcogenide glass[J]. Opt Express, 2006, 14(3): 1280-1285.

[4] Liao M, Chaudhari C, Qin G, et al. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Opt Express, 2009, 17(24): 21608-21614.

[5] El-Amraoui M, Fatome J, Jules J C, et al. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J]. Opt Express, 2010, 18(5): 4547-4556.

[6] Weiblen A D R J, Hu J, Menyuk C R. Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3Chalcogenide photonic crystal fibers[J]. Opt Express, 2010, 18(25): 26666-26674.

[7] Gattass R R, Shaw L B, Nguyen V Q,et al. All-fiber chalcogenide-based Mid-infrared supercontinuum source[J]. Opt Fiber Technol,2012,18(5): 345-348.

[8] Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target Mid-IR applications[J]. Laser Focus World, 2005, 41(4): 83-87.

[9] Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4 000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Opt Express, 2008, 16(10): 7161-7168.

[10] Snopatin G E, Churbanov M F, Pushkin A A, et al. High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km[J]. Optoelectron Adv Mate Rapid Commun 2009, 3(7): 669-671.

[11] El-Amraoui M, Gadret G, Jules J C, et al. Microstructured chalcogenide optical fibers from As2S3glass: towards new IR broadband sources[J]. Opt Express, 2010, 18(25): 26655-26665.

[12] Savelii I, Mouawad O, Fatome J, et al. Mid-infrared 2 000 nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers[J]. Opt Express, 2012, 20(24): 27083-27093.

[13] Gao W, Amraoui M E, Liao M, et al. Mid-infrared supercontinuum generation in a suspended-core As2S3chalcogenide microstructured optical fiber[J]. Opt Express, 2013, 21(8): 9573-9583.

[14] Maji P S, Chaudhuri P R. Design of all-normal dispersion based on multi-material photonic crystal fiber in IR region for broadband supercontinuum generation[J]. Appl Opt, 2015, 54(13): 4042-4048.

[15] Colley C S, Hebden J C,Delpy D T, et al. Mid-infrared optical coherence tomography[J]. Rev Sci Instrum, 2007, 78(12): 123108-1-7.

[16] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nat Photonics, 2012, 6(7): 440-449.

[17] Demircan A, Bandelow U. Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation[J]. Appl Phys B, 2007, 86(1): 31-39.

[18] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Rev Mod Phys, 2006, 78(4): 1135-1184.

[19] Foster M A, Gaeta A L, Cao Q, et al. Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires[J]. Opt Express, 2005, 13(18): 6848-6855.

[20] Heidt A M. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers[J]. J Opt Soc Am B, 2010(27): 550-559.

[21] Zhu Z, Brown T G. Effect of frequency chirping on supercontinuum generation in photonic crystal fibers[J]. Opt Express, 2004, 12(4): 689-694.

[22] Hu P D, Niu Y P, Wang X X, et al. Generation of attosecond pulse pair in polar media by chirped few-cycle pulses[J]. J Opt, 2016(18): 095504-1-10.

[23] Zhang C, Liu C P. Chirp-dependent spectral distribution for few-cycle pulses propagating through nano-semiconductor devices[J]. Phys Lett A, 2016, 380(40): 3233-3237.

(责任编辑 郭定和)

Study on highly coherent mid-infrared supercontinuum source

BIE Yeguang1, ZENG Yan1,2, YANG Zhangyong1,2, CHENG Chunfu1,2, OU Yiwen1,2

(1.School of Science, Hubei University of Technology, Wuhan 430068, China; 2.Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy(Hubei University of Technology), Wuhan 430068, China)

An all-normal dispersion As2S3photonic crystal fiber is selected as the nonlinear media to eliminate the degradation of coherence characteristics of supercontinuum in the anomalous dispersion region which is caused by the modulation instability induced by the fission of higher-order soliton. The nonlinear propagation of an ultrashort pulse and mid-infrared supercontinuum generation in an all-normal dispersion As2S3photonic crystal fiber were simulated with the standard split-step Fourier algorithm. The impact of pulse width, propagation distance, input peak power, initial frequency chirp on the bandwidth, coherence properties and flatness of supercontinuum was simulated and analyzed. By optimizing the parameters of the pump pulse and parameters of the fiber, a highly coherent and flat supercontinuum with 3 dB bandwidth of 2 484 nm is obtained when the optimal chip is -4, pulse width is 50 fs, pump wavelength is 2 800 nm, input peak power is 100 W and fiber length is 20 cm. Key words: fiber optics; As2S3photonic crystal fiber; mid-infrared supercontinuum source; coherence characteristics

2016-11-14)

国家自然科学基金(61475044、41301372、51405143)、太阳能高效利用湖北省协同创新中心开放基金(HBSKFMS2014019、HBSKFZD2014007) 和博士启动金(BSQD13047、 BSQD13048)资助)

别业广(1964-),男,副教授,E-mail:bieyygg@126.com;成纯富,通信作者,副教授,E-mail:chengchunfu@126.com

1000-2375(2017)03-0258-06

TN249

A

10.3969/j.issn.1000-2375.2017.03.009