秸秆还田量对土壤团聚体有机碳和玉米产量的影响

2019-02-21 00:40孟庆英邹洪涛韩艳玉张春峰
农业工程学报 2019年23期
关键词:粒级土层有机

孟庆英,邹洪涛,韩艳玉,张春峰

·农业水土工程·

秸秆还田量对土壤团聚体有机碳和玉米产量的影响

孟庆英1,2,3,4,邹洪涛1,2,3※,韩艳玉1,2,3,张春峰4

(1. 沈阳农业大学土地与环境学院,沈阳 110866;2. 农业部东北耕地保育重点实验室,沈阳 110866;3. 土肥资源高效利用国家工程实验室,沈阳 110866;4. 黑龙江省农业科学院佳木斯分院,佳木斯 154000)

为明确秸秆深还田对土壤团聚体及有机碳和作物产量的影响,在辽宁省半干旱地区进行了6年秸秆深还田小区定位试验,秸秆施用量分别为0(CK)、6 000 kg/hm2(T1)、12 000 kg/hm2(T2)、18 000 kg/hm2(T3)、24 000 kg/hm2(T4),将秸秆还入>20~40 cm土壤亚表层,利用干筛、湿筛得到不同粒级土壤团聚体。结果表明:秸秆添加与CK比可降低土壤0~20 cm和>20~40 cm土层土壤容重;土壤机械性团聚体主要集中在>0.25 mm粒级,而水稳性团聚体主要集中在<0.25 mm粒级,与CK处理比秸秆的添加增加了土壤机械稳定性团聚体平均重量直径(MWD)和土壤水稳性团聚体MWD,随秸秆还田量增加,MWD值增大;秸秆深还田使各粒级团聚体有机碳均高于CK,对>20~40 cm土层土壤团聚体碳含量的影响大于0~20 cm土层;秸秆深还田可增加玉米产量,随秸秆还田时间延长,不同秸秆还田量对玉米产量增加存在差异,2016年玉米产量测定结果各处理与CK比,T1增产4.66%、T2增产6.71%,T3增产5.37%、T4增产8.82%。秸秆深还田,能够提升土壤团聚体的稳定性,有利于增加土壤团聚体碳含量,对土壤质量和玉米产量的提高具有促进作用。

有机碳;团聚体;秸秆还田;玉米

0 引 言

东北三省是中国第一大粮食主产区,2018年,东北三省粮食产量达到1 333亿kg,约占全国粮食总产量的20.3%[1],由此产生的农作物秸秆量巨大。农作物秸秆作为一种重要的生物质资源,其再利用途径多种多样[2-4]。国内外众多研究中,秸秆直接还田成为秸秆主要利用途径[2-4]。由于农作物秸秆是农业生态循环重要物质基础,秸秆还田后可改善土壤水、肥、气、热状况,对土壤质量及作物增产具有积极意义,秸秆还田可显著增加土壤有机碳12.8%[2-4]。随着中国立法严禁秸秆焚烧[5],秸秆直接还田方式主要有秸秆覆盖还田、秸秆耕层还田以及秸秆深还田。秸秆覆盖还田容易造成地表温度降低,不利于作物出苗并造成出苗延迟[6-7]。秸秆耕层还田是指秋收后利用旋耕机将秸秆破碎后旋到土壤耕层中,由于秸秆破碎程度不好,与土壤接触不良,易造成漏风跑墒的现象,影响下一年播种[8-9]。上述2种秸秆还田方式还存在秸秆腐解速度满、矿化养分不能及时被当季作物利用、易发生病虫害等问题[10-11]。秸秆深还田,是指将农作物秸秆施入土壤亚表层(>20~40 cm),这种秸秆还田方式可降低土壤容重,增加土壤孔隙度,改善土壤持水特性,提高土壤水分利用效率,有利于土壤亚表层有机质积累,对作物增产也具有重要促进作用[8-11]。

土壤团聚体作为土壤结构的最小功能单元和物理基础,是评价土壤结构质量的重要指标,其动态变化是对土壤结构和土壤理化、生物特性及其生态功能的综合反映[12-13]。土壤团聚体间的孔隙不但影响土壤中水分的存储和运输,而且影响着土壤生物活性及作物生长[14]。土壤团聚体稳定性是一项重要的土壤特性,影响土壤的可持续性,土壤的生产力及农作物生长[15-17]。土壤团聚体的形成及稳定性受土地利用方式、耕作方式、种植作物、有机物料和肥料输入等的影响[18-20]。大量研究表明秸秆还田对土壤团聚体固碳具有促进作用,秸秆还田对土壤团聚体的影响受秸秆还田方式,秸秆质量和数量的影响[21],易分解的秸秆对土壤微生物区系,土壤酶活性有快速刺激作用,为土壤提供有机质的同时对团聚体的形成及稳定性具有增加作用[22-23]。土壤团聚体是土壤有机碳的重要贮存场所,土壤团聚体的包被作用可使其内部的有机碳得到物理保护免受微生物的分解,进而对稳定土壤结构,保护土壤有机碳有着重要作用;相反,土壤有机碳作为重要的胶结物质能够增强土粒间的团聚性,促进团聚体的形成[24-25],因此土壤团聚体和土壤有机碳密不可分。

为明确在辽宁省半干旱地区秸秆深还田条件下,秸秆还田量对土壤理化性质的影响,本研究将整株玉米秸秆还入土壤亚表层(>20~40 cm),设置了不同秸秆还田量,探讨该模式下,土壤容重,土壤水分,土壤团聚体分布特征变化,明确对土壤团聚体有机碳含量和玉米产量的影响,以期为该地区秸秆深还田条件下,秸秆合理高效利用,改善土壤质量,提高作物产量提供理论依据。

1 材料方法

1.1 研究区概况

试验于2011-2016年在辽宁省凌源市农业技术推广中心试验田进行,凌源市地处温带大陆性季风气候区,干燥寒冷期长,春秋季风大,雨量集中,日照充足,四季分明。凌源境内年平均气温8.7 ℃,年平均降水量为479.4 mm,年平均日照时数为2 748.1 h,无霜期长达130~160 d。

试验区土壤类型为褐土,土壤基本理化性质为:有机碳9.60 g/kg,全氮1.17 g/kg,pH值7.79,容重1.36 g/cm3。

1.2 试验设计

试验于2011年秋开始,田间小区试验,采用人工开沟,沟为梯形,上底宽为60 cm,下底宽为40 cm,沟深40 cm,将风干玉米秸秆打捆,要求两端粗细均匀,捆扎绳使用可降解的麻类或草类材料。土地深开沟后,将其整秆(玉米秸秆包括叶片,茎秆2部分)全部埋入,合垄。按照C∶N=25∶1增施氮素肥料。试验共设5个处理:处理1到处理5的秸秆施用量分别为0、6 000、12 000、18 000、24 000 kg/hm2。分别用CK、T1、T2、T3、T4 表示。试验采取随机区组设计,每小区面积24 m2,每个处理设3次重复。2012年春采用大垄双行的方式在垄台播种玉米,2013年秋,2015年秋在上一次未埋入秸秆位置再进行秸秆深还田,还田量如上。供试玉米品种为郑单958,密度6.75万株/hm2。肥料用量∶纯氮(N)225.0 kg/hm2,纯磷(P2O5)75.0 kg/hm2,纯钾(K2O)120.0 kg/hm2。

1.3 样品采集与分析

1.3.1 土壤样品采集

于2016年秋,玉米收获后采集土壤样品,样品采集方法:每个处理分0~20 cm(表层)和20~40 cm(亚表层)2个土壤深度进行取样,每个小区随机选取3点,采集原状土放入取样盒,在采集和运输过程中减少对土壤样品的扰动,减少对土壤团聚体的破坏。

1.3.2 测定方法

土壤容重:环刀法,采用容积为100 cm3的环刀分层取原状土土样,每小区取样层次为0~20,>20~40 cm;土壤机械稳定性团聚体有机碳采用元素分析仪(Vario EL Ⅲ,德国)测定。

土壤机械稳定性团聚体分级采用干筛法(采用震荡筛分仪Retsch AS200,德国)。将风干后土样混合均匀,采用四分法取100 g分别通过2、1、0.5、0.25、0.053 mm的土壤套筛(振幅1.5 mm,时间3 min),计算出各级干筛团聚体质量分数,并按干筛后所得到的比例配成50 g的风干样品,放入水桶中的套筛以振幅38 mm,时间30 min在水中筛分。将收集到的团聚体用蒸馏水洗入到铝盒,65 ℃烘干并称质量,用于土壤水稳性团聚体测定。

1.3.3 计算方法

不同粒级团聚体的质量百分数,按(1)式计算

式中w为粒级团聚体质量百分比,%;W为粒级团聚体质量;g。

平均重量直径(mean weight diameter, MWD)按BAVEL[26]推导公式计算。

1.4 数据分析

采用Excel 2010进行数据分析,采用SPSS19.0软件进行统计分析,其中方差分析为单因素方差(One Way-ANOVA),显著水平为0.05;采用Origin 9.0软件对数据进行绘图。

2 结果与分析

2.1 秸秆还田量对土壤容重的影响

于2016年秋季测定土壤不同土层容重及含水量,测定结果如表1所示,各处理随土层深度加深土壤容重增大,在0~20、>20~40 cm土层与对照处理比,各秸秆还田处理土壤容重均低于CK;0~20 cm土层土壤容重各处理分别比CK降低2.11%、4.23%、5.63%和9.15%,T3、T4处理与CK比较差异达到显著水平(<0.05);>20~40 cm土层土壤容重各处理比CK分别降低2.76%、6.9%、4.83%和7.59%,除T1处理与CK差异不显著,其他处理差异均达到显著水平(<0.05)。结果说明不同量秸秆添加在一定程度上均可降低单位容积的土体质量,从而降低土壤容重,秸秆还田作为保护性耕作可有效改善土壤容重,对耕作顺利进行具有积极作用。

表1 不同秸秆还田量对土壤容重的影响

注:CK、T1、T2、T3和T4分别指秸秆还田量0、6000、12 000、18 000和24 000 kg·hm-2;不同小写字母表示处理间存在显著差异(<0.05),下同。

Note: CK, T1, T2, T3 and T4 represent straw application rate 0, 6000, 12 000, 18 000 and 24 000 kg·hm-2, respectively; Different lowercase letters mean significant among treatments at 0.05 level, the same as blew.

2.2 秸秆还田量对土壤团聚体的影响

2.2.1 秸秆还田量对土壤机械稳定性团聚体粒级分布的影响

通过干筛法可以获得原状土中各级机械稳定性团聚体百分含量分布,由表2所示,秸秆不同还田量对土壤机械稳定性团聚体分布产生影响:不同处理各土壤机械稳定性团聚体粒级分布基本一致,主要集中分布在>2、>1~2和0.25~1 mm 3个粒级,<0.25 mm粒级团聚体含量最少;各处理与CK相比显著提高了2~1 mm机械性团聚体含量(<0.05),0~20 cm土层与CK相比T3处理增幅最大,提高了59.22%;>20~40 cm土层与CK处理相比T2处理增幅最大,提高了31.43%;各处理与CK相比显著降低了<0.25 mm机械性团聚体含量;分析0~20 cm土层土壤机械稳定性团聚体MWD值与CK比添加秸秆各处理MWD值均高于CK;分析20~40 cm土层土壤机械稳定性团聚体含量可知,与CK比>2 mm团聚体含量均降低,>1~2 mm和1~0.25 mm 2个粒级团聚体含量增加,<0.25 mm团聚体含量降低,随秸秆添加量的增加,MWD值增加,与CK处理相比T1、T2、T3、T4分别增加了4.85%、13.33%、17.58%、18.18%。

表2 不同秸秆还田量土壤机械稳定性团聚体的组成

2.2.2 秸秆还田量对土壤水稳性团聚体粒级分布的影响

通过湿筛法获得土壤中水稳性团聚体的百分含量分布,表3所示,水稳性团聚体分布主要集中<0.25 mm粒级,其次1~0.25 mm,在>2 mm和>1~2 mm粒级含量较少,尤其是> 2 mm粒级含量最少。分析各土层水稳性团聚体百分含量分布可以看出在各处理>2 mm的水稳性大团聚体所占比重较小,且随秸秆添加量增加,>2 mm水稳性团聚体数量增加。0~20 cm 土层>2 mm团聚体含量,T2、T3、T4处理分别比CK高34.55%、59.12%、93.43%;20~40 cm土层>2 mm团聚体含量,T2、T3、T4处理分别比CK高3.98%、78.32%、69.91%;<0.25 mm团聚体含量与CK处理比随秸秆添加量增加而减小,0~20 cm土层除T1处理其他处理与CK相比差异达到显著水平(<0.05);>20~40 cm土层,T3、T4处理与CK处理差异达到显著水平(<0.05);>2 mm、>1~2 mm、1~0.25 mm,水稳性团聚体总量与CK处理比各处理0~20 cm土层分别提高了33.73%、39.92%、36.20%,>20~40 cm土层分别提高了8.37%、24.18%、32.39%;>0.25 mm水稳性团聚体数量直接影响MWD,秸秆添加各处理土壤水稳性团聚体的MWD值高于CK,随秸秆添加量增加土壤水稳性团聚体的MWD值增加,0~20 cm土层水稳性团聚体MWD与CK相比分别提高了2.68%、30.86%、36.9%、42.94%,除T1处理其他处理与CK比差异达到显著水平(<0.05);>20~40 cm土层水稳性团聚体MWD与CK相比分别提高了1.89%、5.66%、33.96%、37.74%,T3和T4处理与CK比差异达到显著水平(<0.05);各处理机械稳定性团聚体MWD值高于水稳性团聚体MWD值。产生这样结果可能是大量非水稳性团聚体在水分作用条件下分解造成的。

2.3 秸秆还田量对土壤团聚体有机碳含量影响

对不同处理土壤机械稳定性团聚体有机碳测定结果如图1所示,秸秆还田显著影响了土壤团体碳含量变化。秸秆添加各粒级团聚体有机碳均高于CK,0~20 cm土层>2 mm团聚体各处理比CK分别高出2.95%、2.24%、2.40%、0.66%;2~1 mm团聚体各处理比CK分别高出6.47%、3.23%、5.51%、1.61%;1~0.25 mm团聚体各处理比CK分别高出7.77%、6.29%、6.77%、5.95%;<0.25 mm团聚体各处理比CK分别高出10.02%、7.45%、7.34%、11.33%。

20~40 cm土层>2 mm团聚体各处理比CK分别高出0.41%、1.18%、7.11%、19.32%;>1~2 mm团聚体各处理比CK分别高出1.72%、5.05%、13.46%、41.50%;1~0.25 mm团聚体各处理比CK分别高出3.14%、6.26%、15.59%、46.23%;<0.25 mm团聚体各处理比CK分别高出11.11%、12.75%、18.92%、49.08%。秸秆深层还田,促进土壤团聚体碳含量升高,对20~40 cm土层土壤团聚体碳含量影响高于对0~20 cm土层影响。

2.4 秸秆还田量对玉米产量影响

2012-2016年玉米测产结果表明(表4),各处理产量2012年为T2>T1>T3>T4>CK,2016年为T4>T1>T2>T3>CK,2012-2016年玉米产量结果表明秸秆深还田对玉米增产有促进作用,且2012,2016年与CK相比玉米增产达到显著水平(<0.05)。试验初期,与CK相比玉米产量增幅较高处理为秸秆还田量低处理,随试验时间延长,产量增幅发生变化,秸秆还田量高处理增产幅度增加,考虑农业生产实际情况,T2处理秸秆还田量与实际农业1 hm2秸秆产量较相符,因此在生产中推荐12 000 kg/hm2秸秆还田量。

表4 2012-2016年不同秸秆还田量对玉米产量的影响

3 讨 论

秸秆直接还田是农作物秸秆综合利用最主要的途径,对生态环境和农业可持续发展具有积极意义。本研究结果表明,秸秆不同量深还田对土壤容重影响显著,与CK比各处理均降低了土壤容重,这与邹洪涛等研究结果较为一致,他研究结果表明秸秆深还田条件下秸秆施入量越大对土壤容重和孔隙度影响越强,秸秆深还田改善了土壤理化性质,为作物生长创造了良好的环境,作物生产力得到提高[10-11]。王胜楠等[8,17]研究也表明秸秆深还田有效降低土壤容重,增加土壤含水量,使土壤具有良好。

土壤团粒结构是土壤肥力的物质基础,是作物优质高产所必须的土壤条件之一,土壤团聚体组成及其基本特性直接决定土壤侵蚀,压实、板结等物理过程和土壤有机质的周转[28-30]。本研究中秸秆深还田条件下,不同秸秆还田量影响了不同土层、不同粒级土壤团聚体分布比例和稳定性。秸秆深还田条件下通过干筛与湿筛得到土壤团聚体分布存在差异,如机械稳定性团聚体以>0.25 mm粒级的大团聚体为主,而水稳性团聚体以<0.25 mm粒级团聚体为主。秸秆的施入促进了土壤团聚体的形成,各处理土壤团聚体的MWD均高于CK,这是由于秸秆在分解过程中提供了胶结物,为团聚体的形成提供了条件。许多研究表明秸秆还田可以提高土壤团聚体团聚度[19,28-29]。土壤团聚体的稳定性关键在于土壤颗粒间的胶结物质的生物稳定性,土壤生物通过对有机质的周转利用来提高自身活性,同时积累难降解有机碳,包括木质素、角质、几丁质等有机胶结剂是否能被微生物迅速分解利用或彻底分解,是影响团聚体生物稳定性的重要因素,微生物可以形成三维的、多种的生物膜结构[30],细胞镶嵌在生物膜的胞外多糖中,能够保持更高的稳定性和降解能力。有研究表明,秸秆主要通过真菌菌丝体生长和其他微生物产生胞外多糖的分解活动,使土壤颗粒与矿物质结合在一起,许多菌丝体分泌出的胶结物质-多糖类物质,使微团聚体粘结在一起,进而被菌丝体缠绕成稳定的大团聚体[31]。土壤中团聚体有机碳的稳定性与有机碳的数量和质量,土壤团聚结构及土壤黏粒表面性质,土壤生物自身等因素存在复杂的相互作用。本研究表明秸秆添加增加了土壤各粒级团聚体有机碳含量,对0~20 cm土壤团聚体有机碳含量影响较小,对>20~40 cm土壤团聚体有机碳含量影响较大,这与谭岑等研究的秸秆深还田条件下土壤养分变化规律较一致[32]。此外王胜楠等[8]研究表明秸秆深还田后土壤各种形态有机碳含量均高于对照,3 a秸秆深还田表明土壤亚表层(>20~40 cm)土壤有机碳含量增加,同时提高了土壤腐殖化程度[33]。崔婷婷等[34]研究表明秸秆还田一方面为土壤提供了外源有机质,另一方面这种新鲜的有机质作为团聚体形成的胶结物质也促进了土壤团聚体的形成,促进了团聚体的稳定,大量研究表明,稳定的团聚体可将更多有机碳保护起来,促进土壤碳的固定和贮存[35-36]。此外秸秆的添加提供了外源有机碳和其他营养物质,也为作物生长提供了养料[37-38]。本研究结果表明玉米产量与CK比增产幅度明显。黄毅等[39]认为秸秆深还田为根系的生长提供丰富的养分,从而促进了玉米根系生长,使玉米根系数目增加,分布空间扩大直接影响玉米产量。

4 结 论

通过连续6 a田间定位试验发现,秸秆深还田有效降低土壤容重,秸秆还田量越大效果越显著,对土壤亚表层(>20~40 cm)的影响大于土壤表层(0~20 cm)的影响。秸秆深还田影响土壤团聚体结构,促进了土壤团聚体的形成及稳定,提高了土壤团聚体有机碳的含量,秸秆深还田显著增加了玉米产量,考虑生产实际,5 a产量测定结果表明,秸秆施用量12 000 kg/hm2整体上增幅最大,因此在生产中推荐12 000 kg/hm2秸秆还田量,秸秆深还田作为保护性耕作可有效改善土壤质量,对耕作顺利进行及作物增产具有积极作用。

[1]李楠桦. 发改委:2018年东北三省粮食产量达2666亿斤[Z/OL].[2019-01-07].http://finance.people.com.cn/n1/2019/0107/c1004-30507939.html?spm=C73544894212.P59511941341.0.0

[2]Blanco-Canqui H, Lal R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil & Tillage Research, 2007, 95: 240-254.

[3]Zhang Peng, Chen Xiaoli, Wei Ting, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil & Tillage Research, 2016, 160: 65-72.

[4]Wang Jun, Fu Xin, Zhao Fazhu, et al. Response of soil carbon fractions and dryland maize yield to mulching[J]. Soil Science Society of America Journal, 2018, 82(2): 371-381.

[5]国家认监委. 中华人民共和国大气污染防治法[Z/OL]..2017-07-11.http://www.cnca.gov.cn/bsdt/ywzl/flyzcyj/zcfg/201707/t20170711_54705.shtml

[6]王秋菊,焦峰,刘峰,等. 秸秆粉碎集条深埋机械还田模式对玉米生长及产量的影响[J]. 农业工程学报,2018,34(9):153-159.

Wang Qiuju, Jiao Feng, Liu Feng, et al. Effect of straw pulverization and concentrated deep-buried into field on growth and yield of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018, 34(9): 153-159. (in Chinese with English abstract)

[7]李新华,郭洪海,朱振林,等. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报,2016,32(9):130-135.

Li Xinhua, Guo Honghai, Zhu Zhenlin, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016, 32(9): 130-135. (in Chinese with English abstract)

[8]王胜楠,邹洪涛,张玉龙,等. 秸秆集中深还田对土壤水分特性及有机碳组分的影响[J]. 水土保持学报,2015,29(1):154-158.

Wang Shengnan, Zou Hongtao, Zhang Yulong, et al. Effect of straw deep returning on the soil water features and soil organic carbon components[J]. Journal of Soil and Water Conservation, 2015, 29(1): 154-158. (in Chinese with English abstract)

[9]朱姝,窦森,关松,等. 秸秆深还对土壤团聚体中胡敏素结构特征的影响[J]. 土壤学报,2016,53(1):126-136.

Zhu Shu, Dou Sen, Guan Song, et al. Effect of corn stover deep incorporation on composition of humin in soil aggregates[J]. Acta Pedologica Sinica, 2016, 53(1): 126-136. (in Chinese with English abstract)

[10]邹洪涛,马迎波,徐萌,等. 辽西半干旱区秸秆深还田对土壤含水量、容重及玉米产量的影响[J]. 沈阳农业大学学报,2012,43(4):494-497.

Zou Hongtao, Ma Yingbo, Xu Meng, et al. Effect of corn stalk returning to soil on soil water content, bulk density and corn yields in semiarid area of western Liaoning Province[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 494-497. (in Chinese with English abstract)

[11]邹洪涛,王胜楠,闫洪亮,等. 秸秆深还田对东北半干旱区土壤结构及水分特征影响[J]. 干旱地区农业研究,2014,32(2):52-60.

Zou Hongtao, Wang Shengnan, Yan Honglaing, et al. Effects of straw deep returning on soil structure moisturein semiarid region of Northeast China[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 52-60. (in Chinese with English abstract)

[12]Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62: 1367-1377.

[13]Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Biochem, 2000, 32(14): 2099-2103.

[14]袁晶晶,同延安,卢绍辉,等.生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J].农业工程学报,2018,34(3):159-165.

Yuan Jingjing, Tong Yan’an, Lu Shaohui, et al. Yuan Guojun. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 159-165. (in Chinese with English abstract)

[15]李景,吴会军,武雪萍,等. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用[J].植物营养与肥料学报,2015,21(2):378-386.

Li Jing, Wu Huijun, Wu Xueping, et al. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carboncontents[J]. Journal of Plant Vutrition and Fertilizer, 2015, 21(2): 378-386.(in Chinese with English abstract)

[16]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. European Journal of Soil Science, 1982, 33(2): 141-163.

[17]Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral associated organic matter[J]. Soil Biological Biochemistry, 1996, 28(4/5): 665-676.

[18]王丽,李军,李娟,等. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J]. 应用生态学报,2014,25(3):759-768.

Wang Li, Li Jun, Li Juan, et al. Effects of tillage rotation and fertilization on soil aggregates and oranic carbon content in corn field in Weibei Highlang[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 759-768. (in Chinese with English abstract)

[19]Eynard A, Schumacher T E, Lindstrom M J, et al. Effects of agricultural management systems on soil organic carbon in aggregates of Ustools and Usterts[J]. Soil and Tillage Research, 2005, 81(2): 253-263.

[20]Besnard E, Chenu C, Balesdent J, et al. Fate of particulate organic matter in soil aggregates during cultivation[J]. European Journal of Soil Science, 2010, 47(4): 495-500.

[21]孙元宏,高雪莹,赵兴敏,等. 添加玉米秸秆对白浆土重组有机碳及团聚体组成的影响[J]. 土壤学报,2017,54(4):1009-1017.

Sun Yuanhong, Gao Xueying, Zhao Xingmin, et al. Effects of corn stalk incorporation on organic carbon of heavy fraction and composition of soil aggregates in albic soil[J]. Acta Pedologica Sinica, 2017, 54(4): 1009-1017. (in Chinese with English abstract)

[22]Roldan A, Garcia-Orenes F, Lax A. An incubation experiment to determine factors involving aggregation changes in an arid soil receiving urban refuses[J]. Soil Biol. Biochem, 1994, 26: 1699-1707.

[23]García-Orenes F, Guerrero C, Roldán A, et al. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem[J]. Soil Tillage Res, 2010, 109: 110-115.

[24]Wanedr M M, Boliero G A. Soil qauality assessment of tillage impacts in illionois[J]. Soil Science Society of America Journal, 1999, 63(4): 961-971.

[25]Eynard A, Schumacher T E, Lindstrom M J, et al. Effects of agricultural management systems on soil organic carbon in aggregates of Ustools and Usterts[J]. Soil and Tillage Research, 2005, 81(2): 253-263.

[26]Bavel C H M V. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1950, 14(C): 20-23.

[27]张帅,孔德刚,常晓慧,等. 秸秆深施对土壤蓄水能力的影响[J]. 东北农业大学学报,2010,41(6):127-129.

Zhang Shuai, Kong Degang, Chang Xiaohui, et al. Effect of straw deep application on soil water storage capacity[J]. Journal of northeast Agricultural University, 2010, 41(6): 127-129. (in Chinese with English abstract)

[28]张迪,姜佰文,梁世鹏,等. 草甸黑土团聚体稳定性对耕作与炭基肥施用的响应[J]. 农业工程学报,2019,35(14):125-132.

Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Responsive of aggregate stability of meadow black soil to different tillage practices and carbon-based fertilizers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)

[29]苏思慧,王美佳,张文可,等. 耕作方式与玉米秸秆条带还田对土壤水稳性团聚体和有机碳分布的影响[J]. 土壤通报,2018,49(4):841-847.

Su Sihui, Wang Meijia, Zhang Wenke, et al. Effects of tillage practices and maize straw incorporation on water-stable aggregates and organic carbon[J]. Chinese Journal of Soil Science, 2018, 49(4): 841-847. (in Chinese with English abstract)

[30]Webb J S, G Ivskov M, K Jelleberg S. Bacterial biofilms prokaryotic adventures in multicellularity[J]. Current Opinion in Microbiology, 2003, 6(6): 578-585.

[31]Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676.

[32]谭岑,窦森,靳亚双,等. 秸秆深还对黑土耕层根区养分空间分布的影响[J]. 吉林农业大学学报,2018,40(5):603-609.

Tan Cen, Dou Sen, Jin Yashuang, et al. Effects of corn overcast deep incorporation on spatial distribution of nutrients in root zone of black Soil[J]. Journal Jilin Agriculture University, 2018, 40(5): 603-609. (in Chinese with English abstract)

[33]邹洪涛,关松,凌尧,等. 秸秆还田不同年限对土壤腐殖质组分的影响[J]. 土壤通报,2013,44(6):1398-1402.

Zou Hongtao, Guan Song, Ling Yao, et al. Effect of different straw return years on humus composition of soil[J]. Chinese Journal of Soil Science, 2013, 44(6): 1398-1402. (in Chinese with English abstract

[34]崔婷婷,窦森,杨软固,等. 秸秆深还对土壤腐殖质组成和胡敏酸结构特征的影响[J]. 土壤学报,2014,51(4):718-725.

Cui Tingting, Dou Seng, Yang Ruangu, et al. Effect of deep applied corn stalks on composition of soil humus and structure of humic acid[J]. Acta Pedologica Sinica, 2014, 51(4): 718-725. (in Chinese with English abstract)

[35]Sun F, Lu S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 26-33.

[36]Noellemeyer E, Frank F, Alvarez C, et al. Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina[J]. Soil and Tillage Research, 2008, 99: 179-190.

[37]成臣,汪建军,程慧煌,等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报,2018,55(1):247-257.

Cheng Chen, Wang Jianjun, Cheng Huihuang, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-mce system[J]. Acta Pedologica Sinica, 2018, 55(1): 247-257. (in Chinese with English abstract)

[38]萨如拉,高聚林,于晓芳,等. 玉米秸秆深翻还田对土壤有益微生物和土壤酶活性的影响[J]. 干旱区资源与环境,2014,28(7):138-143.

Sa Rula, Gao Julin, Yu Xiaofang, et al. Effect of straw-sleep incorporation on soil beneficial microorganism and soil enzyme activities[J]. Journal of Arid Land Resources and Environment, 2014, 28(7): 138-143. (in Chinese with English abstract)

[39]黄毅,毕素艳,邹洪涛,等. 秸秆深层还田对玉米根系及产量的影响[J]. 玉米科学,2013,21(5):109-112.

Huang Yi, Bi Suyan, Zou Hongtao, et al. Effect of straw deep returning on corn root system and yield[J]. Journal of Maize Sciences,2013,21(5):109-112.(in Chinese with English abstract)

Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield

Meng Qingying1,2,3,4, Zou Hongtao1,2,3※, Han Yanyu1,2,3, Zhang Chunfeng4

(1.,,110866,;2.,,110866,; 3.,110866,; 4.,154000,)

Northeast China is an important crop production area, so the amount of crop straw in northeast China is large. Among of main utilization approaches for straw, the straw returned to soil is the most widely adopted approach in China. Returning straw to the soil is beneficial for optimizing the soil environment, preventing and controlling soil degradation, and reducing air pollution that results from burning straw. Currently, straw is returned to the soil in the following three ways: mechanical crushing with backward pressure return, direct mulching and returning straw to deep soil layers. There are many problems with the first two approaches, straw decays slowly because it has a relatively high carbon-to-nitrogen (C/N) ratio, which is not beneficial for the next crop and can decrease the rate of crop emergence. Returning straw to deep soil layers, the bottom of the soil plow layer is broken, the soil bulk density is reduced, and the soil structure is improved. Meanwhile, as straw was buried in the furrow. Crops were planted on the ridge in next season. Thus, crop roots do not directly contact the straw, which could reduce the incidence of disease caused by the harmful substances produced during straw degradation. However, the optimal amount of straw return has not been determined yet. To determine the effects of straw application rates on the soil aggregate ,soil organic carbon content and maize yield under the condition of returning straw to deep soil layers, , The experiments were conducted in the experimental field of the agricultural technology popularization center of Lingyuan city, Liaoning province from 2011 to 2016. After corn harvest in October 2011, five treatments were tested: no straw application. The application of maize straw was at a rate of 6 000, 12 000, 18 000, 24 000 kg/hm2. The straw was incorporation into the subsurface of soil (>20-40 cm). Apply additional nitrogen fertilizer according to C:N=25.1 . The experimental plots were arranged using a random design with three replicates, and the area of each plot was 24 m2. The aggregates amount was examined by dry and wet sieving methods. After straw application for six years, compare with CK, all treatments significantly reduced soil bulk density. The size of dry-stable aggregate and water-stable aggregate were mainly >0.25 mm, <0.25 mm, respectively. Compared with CK, the straw application treatments increased mean weight diameter (MWD) and soil organic carbon content. With the increase of straw application rate, MWD increased. The effect on aggregate SOC of surface soil (0-20 cm) was greater than that of the subsurface soil (>20-40 cm). Compared with CK, the straw application treatments increased the maize yield during 2012-2016. In general, the maize yield increased the most was the straw application amount of 12 000 kg/hm2among all treatments, so it is the recommended treatment. In conclusion, returning straw to deep soil layers can significantly improve aggregate SOC, soil structure, stability and maize yield and is a suitable agricultural practice to improve soil quality in Northeast China.

organic carbon; aggregate; straw application; maize

孟庆英,邹洪涛,韩艳玉,张春峰. 秸秆还田量对土壤团聚体有机碳和玉米产量的影响[J]. 农业工程学报,2019,35(23):119-125.doi:10.11975/j.issn.1002-6819.2019.23.015 http://www.tcsae.org

Meng Qingying, Zou Hongtao, Han Yanyu, Zhang Chunfeng. Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 119-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.015 http://www.tcsae.org

2019-08-07

2019-11-20

辽宁省重点研发计划项目(2019JH2/10200004);国家科技支撑项目(No. 2015BAD23B0203)

孟庆英,助理研究员,博士生,主要从事土壤改良与植物营养。Email:mqy269@126.com

邹洪涛,教授,博士,主要从事土壤改良与农业节水、新型肥料研发与应用。Email:zouhongtao2001@163.com

10.11975/j.issn.1002-6819.2019.23.015

S3

A

1002-6819(2019)-23-0119-07

猜你喜欢
粒级土层有机
有机旱作,倚“特”而立 向“高”而行
土钉喷锚在不同土层的支护应用及效果分析
山地暗棕壤不同剖面深度的团聚体分布
不规则烧结矿余热回收竖罐内气体阻力特性
某铜矿粗扫选泡沫流动特性研究
粗骨料最佳级配的试验研究
纯净天然有机 为您献上一杯道地药茶
土层 村与人 下
土层——伊当湾志
土层 沙与土 上