复杂路况下高速行驶汽车防抱死制动系统滑移率最优跟踪控制

2019-11-01 05:48吴明翔
关键词:最优控制路况控制算法

吴明翔

摘 要: 为了研究在复杂路况下高速行驶汽车能稳定制动的控制策略,基于防抱死制动系统(ABS)滑移率非线性动力学模型,以滑移率误差及其变化率综合最优为控制目标,利用极小值原理推导出制动时最优滑移率的解析解,进而利用制动减速度、制动车速、车轮角速度等反馈信号,在无需复杂路况附着系数信息的前提下,计算制动控制扭矩,建立ABS滑移率最优跟踪控制方法.利用Matlab/Simulink软件,对不同复杂行驶路况下目标滑移率的最优跟踪控制效果进行了仿真验证,发现实际滑移率均能在任意规定的时刻与目标滑移率同步;而同步过程的滑移率误差仅取决于滑移率误差权值与误差变化率权值的比值和制动初始时刻的滑移率误差.所建立的控制方法能保证在复杂路况行驶的任意时刻较为快速、精准、稳定地完成最优制动控制.

关键词: 防抱死制动系统(ABS); 滑移率最优跟踪控制; 滑移率误差; 滑移率误差变化率; 滑移率仿射非线性动力学模型; 极小值原理; 复杂路况

中图分类号: U 461.3; TP 273.1  文献标志码: A  文章编号: 10005137(2019)04037508

Abstract: For the purpose of investigating control strategy of making high speed vehicle brake steadily in complex road conditions,an affine nonlinear dynamic model of antilock braking system (ABS) slip ratio is built.Then,comprehensive optimization of slip ratio error with its changing rate is taken as control objective,and analytical solutions of optimal slip ratio and control torque are derived through minimum principle.And then,real time cooperative computation of brake torque without any adhension coefficient information of complex road conditions can be accomplished by utilizing analytical solution of optimal slip ratio with feedback signals such as brake deceleration,brake speed of vehicle and angular velocity of tire.Therefore,an optimal tracking control method for ABS slip ratio of high speed vehicle in complex road conditions and disturbances is established.Through Matlab/Simulink numerical evaluation of effect of proposed optimal control for tracing different objective slip ratio in different complex road conditions,it can be observed that the target slip ratio can be synchronized with actual slip ratio at any specified time,and also slip ratio error is determined by its initial value and ratio between weight of slip ratio error and that of its change rate in control objective functional.Consequently,it can be concluded that steady accomplishment of such rapid and precise brake action in complex road conditions at any time is feasible.

Key words: antilock braking system (ABS); optimal tracking control of slip ratio; slip ratio error; changing rate of slip ratio error; affine nonlinear dynamic model of slip ratio; minimum principle; complex road condition

0 引 言

作為汽车电子稳定控制(ESP)系统的关键子系统之一,防抱死制动系统(ABS)需要将车轮滑移率控制在目标值附近,从而避免在复杂路况下,汽车高速行驶时出现甩尾或漂移等现象[1-3],同时确保汽车能在尽可能短的距离内平稳制动[4].除此之外,ABS在飞机、铁路列车等机电复合系统的轮式装置中也得到了广泛的应用[5].

ABS滑移率控制理论研究的本质是确保实际滑移率和目标滑移率之间的误差(滑移率误差)达到最小.目前,滑移率控制研究使用的主要控制算法有逻辑门限值[6]、比例-积分-微分[7-9]、模糊神经网络[10-12]、滑模控制[13-15]、最优控制[16-18]等算法.PID算法与模糊神经网络算法都过于依赖某个ABS的专家经验计算制动力矩,一旦ABS结构参数发生改变,需要花费较长时间生成新的算法规则,降低了算法的可移植性,不利于产品的更新换代;另外,由于不同的专家经验必然导致不同的控制效果,无法在理论上证明控制效果的最优性.逻辑门限值控制过程中需要不断根据专家个人经验来修正制动力矩,以期逼近目标滑移率.由于在计算滑移率、车速、轮速的过程中,均会发生明显的波动,不利于制动稳定性,滑模控制算法在ABS动力学建模的基础上,通过选择合适的滑模面与趋近律,计算最佳制动力矩,具有较好的移植性及较强的稳健性,但在设计趋近律的过程中,未证明滑移率误差是否为最小,而无抖振的理想滑模运动是不存在的[16],所以滑模控制算法有可能激发制动系统中的高频颤振[16],从而恶化制动过程的平顺性.

为了使滑移率误差达到理论最小值,同时避免高频颤振现象,PETERSEN等[17]采用了在线性二次型(LQR)最优控制理论,ANWAR等[18]采用了预测最优控制理论.由于控制模型的高度是非线性的,在其研究过程中不得不进行模型近似线性化与大量在线数值优化计算等工作,不仅影响了控制计算精度,还花费了大量计算时间.ANWAR等[18] 和DELON等[19] 针对ABS非线性动力学模型,基于打靶算法,设计了ABS滑移率最优控制算法,由于偏微分方程组存在非线性两点边值问题,需采用复杂的数值迭代分析过程对其求解,计算过程烦琐.

为解决上述问题,本文作者将复杂路况下单轮ABS制动动力学方程等效地转化为以滑移率为状态变量的仿射非线性动力学模型,以滑移率误差及其变化率的加权平方和在滑移率同步时间内的积分作为控制目标泛函,基于最优控制理论中的极小值原理,求得时域内最优滑移率的解析解.在此基础上,利用反馈的制动减速度、制动车速、车轮角速度等信号,计算制动控制扭矩的大小,无需对路面附着系数进行实时估计监控.对不同复杂路况下的高速制动过程滑移率最优跟踪控制算法进行了仿真验证,证明该最优跟踪控制算法对复杂路况、模型结构参数、外界干扰具有极强的稳健性.

4 结 论

在复杂路况下高速行驶制动过程中,为了使实际滑移率与目标滑移率同步,使滑移率误差达到理论最小值,提出了滑移率最优跟踪控制的解析求解算法.仿真实验结果表明:该算法能够保证实际滑移率在规定的任意时刻内与目标滑移率保持同步.此外,由于最优滑移率解析解已知,该算法的执行只需利用反馈的制动减速度、制动车速、车轮角速度等信号,而不需要具体的路面附着信息,算法具有较强的稳健性.

参考文献:

[1] FURUKAWA Y,ABE M.Advanced chassis control systems for vehicle handling and active safety [J].Journal of Vehicle System Dynamics,1997,28(2):59-86.

[2] GOODARZI A,ESMAILZADEH E.Design of a VDC system for allwheel independent drive vehicles [J].IEEE/ASME Transactions on Mechatronics,2008,12(6):632-639.

[3] MIRZAEINEJAD H,MIRZAEI M.A novel method for nonlinear control of wheel slip in antilock braking systems [J].Journal of Control Engineering Practice,2010,18(8):918-926.

[4] 李君.车辆ABS控制系统快速开发研究 [D].上海:上海交通大学,2001.

LI J.Study on the rapid development for vehicle antilock braking system [D].Shanghai:Shanghai Jiao Tong University,2001.

[5] MEI T X,YU J H,AWILSON D.A mechatronic approach for effective wheel slip control in railway traction [J].Journal of Rail and Rapid Transit,2009,223:295-304.

[6] 李剛,王野,赵德阳.基于逻辑门限值的汽车ABS控制策略与试验研究 [J].现代制造工程,2017,442(7):12-16.

LI G,WANG Y,ZHAO D Y.Study on control strategy and experiment of automobile ABS based on logic threshold value [J].Modern Manufacturing Engineering,2017,442(7):12-16.

[7] AMMAR A.ALDAIR.Design of neurofuzzy self tuning PID controller for antilock braking systems [J].Journal of Babylon University/Engineering Sciences,2014,22(4):775-787.

[8] SHARKAWY A A.Genetic fuzzy selftuning PID controllers for antilock braking systems [J].Engineering Applications of Artificial Intelligence,2010,23(7):1041-1052.

[9] SOLYOM S,RANTZER A,LUDEMANN J.Synthesis of a modelbased tire slip controller [J].Vehicle System Dynamics,2004,41(6):475-499.

[10] 马忠武,倪兰青,陈宇珂,等.基于神经模糊PID的ABS控制策略研究 [J].重庆理工大学学报(自然科学),2018,32(9):14-22.

MA Z W,NI L Q,CHEN Y K,et al.Research on ABS control strategy based on neurofuzzy PID [J].Journal of Chongqing University of Technology(Natural Science),2018,32(9):14-22.

[11] YONGGON L,ZAK S H.Designing a genetic neural fuzzy antilockbrakesystem controller [J].IEEE Transactions on Evolutionary Computation,2002,6(2):198-211.

[12] WANG W Y,LI I H,CHEN M C.Dynamic slipratio estimation and control of antilock braking systems using an observerbased direct adaptive fuzzyneural controller [J].IEEE Transactions on Industrial Electronics,2009,56(5):1746-1756.

[13] CHOI S B,BANG J H,CHO M S.Sliding mode control for antilock brake system of passenger vehicles featuring electrorheological valves [J].Journal of Automobile Engineering,2002,216(11):897-908.

[14] OKYAY A,CIGEROGLU E,BASLAMS S C.A new slidingmode controller design methodology with derivative switching function for antilock brake system [J].Journal of Mechanical Engineering Science,2013,227(11):2487-2503.

[15] 毛艳娥.基于滑移率的车辆防抱死制动系统控制算法研究 [D].沈阳:东北大学,2011:.

MAO Y E.On control algorithms of vehicle antilock braking system based on slip ratio [D].Shenyang:Northeastern University,2011.

[16] 刘金坤.滑模变结构控制MATLAB仿真 [M].2版.北京:清华大学出版社,2014:4-5.

LIU J K.Sliding Mode Control Design and MATLAB Simulation [M].2nd ed.Beijing:Tsinghua University Press,2014:4-5.

[17] PETERSEN,I.Wheel slip control in ABS brakes using gain scheduled optimal control with constraints [D].Trondheim:Norwegian University of Science and Technology,2003.

[18] ZDALYAN B.Development of a slip control antilock braking system model [J].International Journal of Automotive Technology,2008,9(1):71-80.

[19] ANWAR S,REYHART D,REYHART D R.Optimal control of an ondemand allwheel drive system (ODAWD) for vehicle traction enhancement [J].International Journal of Vehicle Design,2011,56(1/2/3/4):270-298.

[20] 李道飞.基于轮胎力最优分配的车辆动力学集成控制研究 [D].上海:上海交通大学,2008.

LI D F.Study on integrated vehicle dynamics control based on optimal tire forces distribution [D].Shanghai:Shanghai Jiao Tong University,2008.

[21] 余志生.汽车理论 [M].5版.北京:机械工业出版社,2009.

YU Z S.Automobile Theory [M].5th ed.Beijing:China Machine Press,2009.

[22] 林棻,黄超.采用UKF算法估计路面附着系数 [J].哈尔滨工业大学学报,2013,45(7):115-120.

LIN F,HUANG C.Unscented Kalman filter for road friction coefficient estimation [J].Journal of Harbin Institute of Technology,2013,45(7):115-120.

(責任编辑:包震宇)

猜你喜欢
最优控制路况控制算法
高速公路路况信息系统
条件平均场随机微分方程的最优控制问题
带跳跃平均场倒向随机微分方程的线性二次最优控制
Timoshenko梁的边界最优控制
从路况报道看广播“类型化”新闻的要素构成
基于ARM+FPGA的模块化同步控制算法研究
采用最优控制无功STATCOM 功率流的解决方案
一种优化的基于ARM Cortex-M3电池组均衡控制算法应用
高速公路实时路况分析系统方案
浅谈微信在路况信息发布中的应用