欧李果实发育期内挥发性成分变化特征

2021-05-12 15:07李晓颍武军凯王海静李梦园申艳红刘建珍张立彬
中国农业科学 2021年9期
关键词:酯类丁酸香型

李晓颍,武军凯,王海静,李梦园,申艳红,刘建珍,张立彬

欧李果实发育期内挥发性成分变化特征

1河北科技师范学院园艺科技学院,河北秦皇岛 066600;2河北省特色园艺种质挖掘与创新利用重点实验室,河北秦皇岛 066600

【】研究欧李果实发育过程中的挥发性成分与含量变化,揭示果实香气的香型转化特征,明确参与挥发物合成的主要代谢途径,为探讨果实香气代谢机制及品质育种提供数据支持。以‘燕山1号’欧李为试材,采用顶空固相微萃取-气相色谱仪-质谱联用技术(HS-SPME-GC-MS),自坐果25 d开始,每隔10 d对果实挥发性成分进行测定。利用解卷积系统(AMDIS)与NIST11质谱库以及保留指数(RI)对挥发性成分进行鉴定,内标法确定挥发物含量,进一步明确果实香气品质与香型转化特征以及不同挥发物类型合成的主要代谢途径。发育期内共检测到140种挥发物,幼果期明显多于其他时期,成分复杂;绿果期挥发物生成速率显著升高,含量增加。酯、萜类是主要挥发物类型,含量占90%以上。青香型挥发物在幼果期至着色期内含量丰富,商熟期内显著降低;果香型挥发物自商熟期逐渐增加,花香型挥发物在完熟期内显著增加。OAVs表明幼果期至绿熟期花香强度高,是主要香气特征,着色期开始果香强度随发育期逐渐增加,完熟期后果香与花香强度接近,是成熟果实的典型香气特征。幼果期挥发物代谢途径复杂,产生的挥发物类型丰富,其中参与萜类合成主要为MEP和MVP代谢途径,参与醛、醇、酯类合成主要为脂肪族和氨基酸代谢途径;绿熟期至商熟期萜类物质代谢程度与参与酯类合成的氨基酸代谢程度明显降低,不饱和脂肪酸代谢程度明显增加;完熟期不饱和脂肪酸代谢活跃度降低,参与酯类合成的饱和脂肪酸和氨基酸代谢途径以及参与单萜合成的脂肪酸-氧化途径与脱辅基类胡萝卜素裂解途径增强,形成了大量支链酯类和芳香酯类以及环状单萜,对于典型成熟果实香气的形成具有重要作用。欧李果实发育过程挥发物变化明显,合成代谢途径具有明显更替。发育早期产生的挥发物有助于果实发育和环境适应;绿熟期以不饱和脂肪酸为底物的己酯、己烯酯类合成途径明显加强,挥发物逐渐积累;着色期果实快速生长,挥发物合成具有滞后性,代谢途径明显转化;完熟期参与支链酯、芳香酯、环状单萜的合成代谢途径明显增强,与成熟果实香气明显相关。典型果实香气主要形成于完熟期,稍晚于生理成熟期,适当延迟采收有助于果实芳香品质的形成与保留。

欧李;发育阶段;挥发性成分;香型;代谢途径

0 引言

【研究意义】香气是果实风味品质的重要组成,影响消费者的喜好程度。通过研究不同发育阶段挥发性成分以及香气类型的转化与代谢,对于研究果实品质、指导果实栽培与采收具有重要意义。【前人研究进展】目前已鉴定的果实香气物质大约有2 000多种,包括酯类、醇类、醛类、酸类、萜类和挥发性酚类等类型,根据感知不同可分为果香型、花香型、青香型、辛香型、木香型等香气类型[1]。不同发育阶段果实营养成分和香气物质变化非常明显,适宜成熟期采收的果实,香气浓郁,具有典型的成熟果实特征[2]。有关果实发育进程中的香气组成及变化规律已有很多报道,草莓在成熟期内青香型物质显著降低,花香型物质显著增加[3]。蓝果忍冬从坐果期到成熟期香气成分由以醛类为主,逐渐转变为以烃类、醇类和醛类为主[4]。山刺番荔枝随着果实成熟,香韵明显增多,呈现由青香型向果香型转变,转白期香型种类最多,香韵特征最明显[5]。己醛、()-2-己烯醛、苯甲醛、()-2-己烯醇、乙酸乙酯、己酸乙酯是甜樱桃成熟果实的特征香气成分,这些物质在着色期大量合成,在商熟期达到高峰,完熟期出现大量乙醇,风味变劣[6]。‘瑞都香玉’葡萄果实在发育过程中,主要香气成分的积累都有减弱,着色期转为成熟期时是果实香型形成的关键时期[7]。葡萄果实成熟过程中,C6和C9化合物、苯衍生物、萜类物质在数量和含量上有明显差异,醇类、醛酮类、C6化合物和萜类存在于转色期之前,该时期是挥发物生物合成的过渡阶段,酯类主要出现在着色期之后,C6化合物在成熟初期呈先增后减的趋势,乙酸酯类在果实发育过程中转化为醛类,并最终转化为醇类[8-10]。山梅成熟过程中,游离醛类、醇类、酯类和酚类物质增多,而萜类减少。结合态的醛类、醇类、萜类、酯类和酚类在成熟过程中逐渐减少[11]。【本研究切入点】欧李[(Bge.) Sok]是我国北方特有树种,是一种有价值的第三代果树,市场前景良好,极具发展潜力。目前有关欧李挥发性成分的研究以成分分析与分析方法为主。【拟解决的关键问题】对不同发育阶段果实挥发物成分进行分析测定,通过挥发物种类与含量的变化情况,明确挥发物香型转化过程与有关代谢途径在挥发物形成过程中的变化规律,了解果实挥发物形成的关键时期,从而为果实品质评价和最佳采收时期确定提供参考,为探讨果实香气代谢机制以及品质育种提供理论依据。

1 材料与方法

试验于2019年4—9月在河北科技师范学院进行。

1.1 材料

欧李果实采于试验站欧李资源圃,品种为‘燕山1号’,土壤肥力中等,褐土。坐果25—115 d内,每隔10 d采摘同一树体,相同株高与方向上大小、色度一致的健康无病害果实10—20个,装入自封袋,带回实验室。试验时,将完整果实去核切碎并充分混匀,准确称取2.0 g迅速置于20 mL顶空瓶中,封口。每个试验设3次重复。

1.2 测定条件与方法

1.2.1 主要发育阶段的确定 根据果实的发育阶段特征并参考相关文献报道[12],以坐果为起点,将其分为幼果期、绿熟期、着色期、商熟期、完熟期5个发育阶段(表1)。

表1 欧李果实发育阶段外观特征

1.2.2 测定条件 仪器为安捷伦7890A-5975C气相色谱-质谱联用仪(配有PAL3自动进样系统),HP-5 MS石英弹性毛细管柱(30.0 m×320 μm×0.25 μm)。载气为He(99.999 %),不分流进样,流量1.0 mL·min-1,进样口温度230℃。升温方式:起始温度为40℃,保持5 min,以2℃·min-1升至70℃,保持2 min,再以5℃·min-1升至120℃,保持2 min,再以10℃·min-1升至230℃,保持5 min。电离方式为EI,电子能量70 eV,离子源温度为230℃,接口温度250℃,四级杆温度150℃,质量扫描范围为50—550 m/z。

1.2.3 萃取条件 固相微萃取头型号为Supelco 50/30 μm DVB/CAR/PDMS,试验开始前对固相微萃取纤维头进行老化处理,以消除杂质干扰,加热温度50℃、平衡时间30 min、萃取时间30 min,振摇速度为250 r/min,解吸时间为5 min。

1.2.4 定性与定量 利用GC-MS联用仪工作站所关联的自动解卷积系统(AMDIS)与NIST11质谱库,结合化合物保留指数值(RI)对挥发物进行鉴定。3-辛醇作为内标对挥发物含量进行定量分析[13]。

1.3 数据分析

采用Excel 2016软件整理试验数据,DPS 9.5进行描述性统计、多重比较和相关性分析。

2 结果

2.1 不同坐果天数的欧李单果重

图1是不同坐果天数的欧李平均单果重,幼果期至绿果期果重增加不明显,果实生长缓慢。着色期开始果实进入快速生长期,果重显著增加,完熟期后果实增重放缓,果实发育结束。

不同字母表示数据间差异显著(P<0.05,Duncan’s新复极差法)。下同

2.2 不同发育阶段挥发性成分与含量

由不同坐果天数果实香气成分(表2)可知,发育期内共检测到140种挥发物,随果实发育主要呈减少趋势(图2-A)。幼果期挥发物种类显著高于其他时期,坐果25 d、35 d分别为85种、81种,进入绿熟期挥发物种类明显减少,坐果95 d时为32种,完熟期内挥发物种类则有所增加,坐果105 d时为47种。

图2-B是不同发育阶段挥发物总含量,由图可知,幼果期内挥发物含量明显降低,绿熟期内代谢活跃度升高,挥发物含量迅速增加,坐果65 d时挥发物含量为1 634 μg·kg-1,接近于花后25 d,着色期果实开始快速生长,挥发物生成速度放缓,含量显著降低,商熟期含量变化不明显,完熟期内含量有下降趋势。

图2 不同坐果天数检测到的挥发物情况

2.3 不同发育阶段挥发物类别

发育期内检测到的挥发物类型为萜类(47种)、酯类(62种)、烷烃类(12种)、醛类(6种)、醇类(6种)、芳香烃类(3种)以及少数酸类(1种)、杂环化合物(1种)、腈类(1种)和醚类(1种)。酯类和萜类是果实的主要挥发物类型,占挥发物总数的60 %以上(图3-A)。幼果期至着色期,酯、萜类类型挥发物种类接近,占总数的30%—40%;商熟期开始萜类所占比例明显降低,酯类明显增加;完熟期酯类物质种类有减少的趋势,萜类则有所增加。

图3 不同坐果天数酯类与萜类挥发物情况

表2 不同坐果天数的欧李果实挥发性成分与含量

续表2 Continued table 2

续表2 Continued table 2

由酯类与萜类挥发物含量(图3-B)可以看出,幼果期两类挥发物含量水平均有明显降低,挥发物生成速率减弱;酯类物质在绿熟期内生成速率明显升高,含量明显增加,萜类物质在绿熟期至着色期内含量变化不明显;着色期随着果实进入快速生长期,代谢途径具有一定的滞后性,生成速率放缓,酯类物质含量降低;商熟期酯类代谢活跃度逐渐恢复,含量有上升的趋势,萜类则进一步降低;完熟期酯类挥发物有损失趋势,萜类物质含量无明显变化。

由酯、萜类挥发物相对含量(图3-C)可知,发育期内酯、萜类挥发物含量保持在90%以上,幼果期萜类相对含量增加,酯类含量则降低至与萜类相当;绿熟期萜类明显降低,酯类明显增加,开始成为主要挥发物类型;着色期内酯类挥发物含量变化不明显,萜类则有所升高;商熟期内酯类达到90%以上,萜类物质显著降低至10%以下;完熟期内酯类物质含量开始有减少的趋势,萜类物质无明显变化,典型果实香气特征完全形成。

2.4 香气类型与香气强度值(odour activity values,OAVs)

通过参考挥发性成分香气特征(表3)可知,主要香气类型为果香型(27种)、青香型(27种)、花香型(19种)、木香型(12种)、草香型(6种)、辛香型(6种)、醛香型(3种)、橘香型(2种)、脂香型(2种)。具有高、中、低等香气强度的挥发物分别为25种、77种和3种。

酯类以青香型、果香型、花香型为主,幼果期、绿熟期出现的异戊酸己酯、()-丙酸-2-己烯酯、苯甲酸反-2-己烯酯、苯甲酸己酯、丙酸顺-3-己烯酯、丁酸顺-2-己烯酯、己酸反-2-己烯酯、己酸己酯、惕各酸-()-2-己烯酯、异戊酸反-2-己烯酯、()-丁酸-3-己烯酯、丁酸己酯、苯甲酸叶醇酯等,具有荚青刀豆、绿叶、生梨等明显的未成熟果实气息。完熟期出现的乙酸异戊烯酯、丁酸异戊酯、乙酸己酯、乙酸反-3己烯酯、辛酸乙酯、已酸乙酯、异丁酸己酯、乙酸丁酯、己酸丁酯、丁酸丁酯、己酸异戊酯、乙酸戊酯,以及完熟期之前出现的2-甲基丁酸顺-3-己烯酯、丙酸己酯、戊酸己酯、异丁酸己酯、异丁酸顺-3-己烯酯、异戊酸顺-3-己烯酯具有苹果、香蕉、梨、浆果、樱桃、菠萝等典型的果香特征。乙酸橙花酯、丁酸-4-戊烯酯、丁酸香叶酯、己酸-4-戊烯酯、乙酸香茅酯、乙酸香叶酯、苯乙酸乙酯具有茉莉、玫瑰、铃兰等花香特征。

萜类香型复杂,(-)-莰烯、()--金合欢烯、-古巴烯、-蒎烯、-衣兰油烯、-杜松烯、柏木脑、倍半侧柏烯、大牛儿烯、香柠檬烯、律草烯、香树烯具有樟脑、松木、百里香、杉木等典型木香特征。反式--罗勒烯、茴香醚、鸡蛋果素、茶螺烷、-荜澄茄油烯、-蒎烯、环苜蓿烯具有香草气味。别罗勒烯、橙花醚、1-壬醇、苯乙醇、风信子醛、顺式-罗勒烯、顺式-玫瑰醚、芳樟醇、-香茅醇、波斯菊萜、反式-玫瑰醚、金合欢醇、茉莉酮具有玫瑰、风信子、香茅、铃兰、茉莉等花香特征。二氢--紫罗兰酮、()-4,8-二甲基-1,3,7-壬三烯呈果实青香。4-萜烯醇、-水芹烯、-石竹烯具有胡椒、樟脑、愈创木酚的辛香特征。-柠檬烯、-松油烯、柠檬醛、-松油醇具有柠檬、柑橘香气。反-2-壬烯醛、反-2-己烯醇、叶醇、正己醇、反-2-己烯醛等C6、C9醛、醇具有黄瓜、蔬菜、绿叶青、嫩叶的青香。

表3 果实香气品质与不同发育期阶段香气强度值

续表3 Continued table 3

续表3 Continued table 3

续表3 Continued table 3

L、M、H分别表示香气强度为低、中、高 L, M and H indicate the odor strength of volatiles at low, medium and high, respectively

发育期主要香型含量变化(图4)表明,青香型挥发物在幼果期至着色期内含量丰富,坐果65 d时含量最高至85%,商熟期开始青香型含量开始显著降低,完熟期后仅占10%;果香型挥发物在幼果期至商熟期含量低,仅约占10%,完熟期后逐渐升高至20%;木香型挥发物主要存在于幼果期至着色期,占20%左右,在商熟期显著降低至2%以下;花香型挥发物在幼果期至商熟期含量极低,仅占1%左右,完熟期显著升高至约62%,是典型果实香气形成的关键成分。

图4 主要香气类型相对含量随坐果天数变化情况

参考香气阈值,计算不同发育阶段平均香气强度值(OAVs,即挥发物含量与香气阈值的比值)(表3),幼果期至完熟期的OAVs加和值分别为426、330、52、119、128。幼果期内果实香气的主要贡献成分(OAVs>1)为芳樟醇、癸醛、乙酸己酯、反式-2-壬烯醛、丙酸己酯、异戊酸己酯、壬醛、异丁酸己酯;绿熟期为芳樟醇、顺式-玫瑰醚、癸醛、反式-2-壬烯醛、乙酸己酯、异戊酸己酯、壬醛、丙酸己酯、异丁酸己酯、乙酸反-3己烯酯;着色期为顺式-玫瑰醚、乙酸己酯、异戊酸己酯、乙酸反-3己烯酯、丙酸己酯、异丁酸己酯;商熟期为乙酸异戊烯酯、顺式-玫瑰醚、芳樟醇、丁酸异戊酯、壬醛、乙酸反-3己烯酯、丙酸己酯、辛酸乙酯、乙酸香叶酯;完熟期为顺式-玫瑰醚、乙酸异戊烯酯、芳樟醇、丁酸异戊酯、乙酸己酯、二氢--紫罗兰酮、乙酸异戊酯、乙酸反-3-己烯酯、壬醛、乙酸香叶酯。这些挥发物的OAVs加和值占97%以上。

根据OAVs加和分布(图5),可以看出幼果期至绿熟期香型特征较为一致,花香特征占重要比重,着色期开始果香特征逐渐增加,完熟期果香特征增至与花香相当。可见果香和花香是果实典型香气特征。

图5 不同发育期挥发物香型分布

3 讨论

3.1 果实发育阶段挥发物种类与含量特征

果实的发育过程是一系列复杂的生理生化变化过程,不仅包括果实生长,还包括果实质地、风味、香气、色泽以及内含物质等的变化[25]。根据欧李果实成熟期特征变化,果实发育期分为幼果期、绿熟期、着色期、商熟期、完熟期5个阶段。幼果期挥发物种类明显高于其他时期,成分复杂,类型广泛。幼果期向绿熟期发育过程中挥发物种类明显减少,C6、C9醛、醇与萜类挥发物明显减少。完熟期后的果实挥发物种类有所增加,出现支链酯、芳香酯与环状单萜,这些物质对于成熟果实的香气形成具有重要意义。

幼果期挥发物含量明显降低,挥发物特征有明显变化;绿果期内挥发物含量持续上升,合成代谢速率增加;着色期内挥发物含量显著降低,挥发物类型无明显变化,可能是由于果实进入快速生长期,体积增大,代谢反应相对滞后的原因[7];商熟期开始挥发物生成速率有所恢复,整体挥发物含量升高,完熟期达到最大值,成熟果实香气特征基本形成;完熟期后挥发物代谢活跃度减弱,随果实发育挥发物成分有所损耗。

3.2 主要挥发物类型变化特征

醛、醇类主要存在于幼果期,C6、C9醛、醇是植物在抵御伤害过程的重要产物,具有新鲜的青香,是青香型物质的代表[26-27],普遍存在于果仁、茶叶[28]中,苯甲醛及其衍生物苯甲醇、苯乙腈具有苦杏仁味,主要由果实中苦杏仁苷经酶解产生,苯乙醇、苯乙醛具有玫瑰和风信子的花香特征,苯甲醛是甜樱桃的特征香气成分,含量随甜樱桃发育期不断升高[6],但欧李果实中苯甲醛含量随发育期明显减少。

萜类多数存在于商熟期之前,研究表明,萜类挥发物与昆虫摄食、传粉、防御或应激反应有关,()-4,8-二甲基-1,3,7-壬三烯(DMNT)在坐果25 d的含量高达162 μg·kg-1,是虫害诱导的主要产物,能够作为诱导剂诱导害虫天敌捕杀害虫[29],此外,-荜澄茄油烯、-古巴烯、-石竹烯等亦可作为重要的引诱剂用于害虫防治[30]。此外,单萜和倍半萜参与果实和花香气的形成[27],花香型萜类挥发物,如芳樟醇、月桂烯等香气特征明显,阈值低,对果实香气形成具有重要作用。

本研究在欧李果实发育期内共检测到68种酯类,广泛分布于各个时期,含量普遍较高,商熟期酯类所占比例明显增加,除幼果期外,其他时期含量均高于75%,完熟期达到90%以上,酯类是给予果品特征果香型或水果味香气的主要挥发性成分,在果实成熟过程中扮演重要的角色[31]。

3.3 香气类型随发育期变化

挥发物香型主要为果香型、青香型、花香型、木香型。青香型在幼果期至着色期内占有绝对优势,花香型挥发物在完熟期前的整体含量仅占1%左右,进入完熟期含量增加至20%,花香型挥发物香气阈值低,特征明显,是构建果实花香型特征的重要组成[23]。木香型挥发物主要为倍半萜,存在于商熟期之前,与果核的发育以及木质素的合成有关[32],欧李果核的完全木质化在着色期,之后果肉细胞无木质素的积累,萜类含量显著降低至2%以下。香型含量变化表明,由青香型向果香型、花香型过渡是果实成熟过程中香型变化的重要特征,与其他果实香型变化具有一致性[3,5]。

香气阈值和香气强度值(OAVs)对于筛选主要香气成分具有重要作用,通常认为挥发物的OAVs>1时对嗅觉有影响,且OAVs越高影响越显著[18,33]。由不同发育期的OAVs,可以看出幼果期与绿熟期香气浓郁,具有新鲜花香的芳樟醇香气阈值低,OAVs分别高达363和213,对特征香气贡献度高,具有青辛微甜的癸醛和黄瓜青香的反-2-壬烯醛对于幼果期至绿熟期香气形成具有一定贡献;着色期香气品质显著降低,OAVs加和值仅为52,与香气代谢的滞后性有关,是香气发育的过渡期;商熟期至完熟期芳樟醇降至19和15,具生果实气味的异戊酸己酯也明显降低,花香和生果实气味明显减弱,乙酸异戊烯酯、丁酸异戊酯、辛酸乙酯对OAVs贡献度高,是成熟果实香气的重要组成。

OAVs加和分布则显示,幼果期至绿熟期果实具有明显的花香特征,着色期开始果香特征不断增加,是香型转化的过渡期,发育至完熟期后果香与花香水平相当,分别占47%和46%,构成了成熟果实的典型香气特征。挥发物在花香型挥发物含量在幼果期至商熟期仅占1%左右,但OAVs贡献度却达到80%,果实在芳香特征上主要呈现花香向果香的转化过程,与含量上所呈现的青香型向果香型、花香型转化特征有一定差异。由此可见,OAVs是评价香气特征的重要补充。

3.4 主要合成代谢途径

单萜和倍半萜的合成分别依赖于质体的甲基--赤藓醇磷酸盐(Methylerythritol 4-phosphate,MEP)和细胞质内的甲羟戊酸(Mevalonate,MVP)途径,分别以香叶基二磷酸(GDP)和法呢基二磷酸(FDP)作为底物,在萜类合成酶和环化酶的作用下形成萜烯骨架,再经一系列酶修饰成为相应的萜类[34]。试验共检测到44种萜类(单萜27种、倍半萜17种),其中幼果期最多为32种。除柏木脑外,倍半萜均出现在完熟期之前,可能参与倍半萜合成的MVP代谢途径相关基因在完熟期表达量降低,也可能由于形成结合态,转化为中间底物,由此可见,倍半萜对成熟果实香气的贡献度不高;单萜类挥发物分布于整个发育期,其合成主要依赖于MEP途径,香气阈值较低,香气贡献度高,芳樟醇、月桂烯等是果实特征香气的重要来源[27,35-36]。完熟期出现了14种单萜,多数具有环状结构,如茶螺烷、二氢--紫罗兰酮、二氢--紫罗兰酮、顺式-玫瑰醚、紫苏烯、橙花醚,主要由饱和脂肪酸经-氧化与脱辅基类胡萝卜素裂解形成[37],这表明随着成熟果实饱和脂肪酸和类胡萝卜素含量增加,以此为底物的萜类代谢途径更加活跃。

C6、C9醛,如顺-2-己烯醛、反-2-壬烯醛、壬醛等以亚油酸和亚麻酸为底物在脂氧合酶(Lipoxygenase,LOX)、氢过氧化物裂解酶(Hydroperoxidelyase,HPL)的作用下形成,并可进一步经醇脱氢酶(Alcohol dehydrogenase,ADH)的作用可形成相应的醇,如1-壬醇、反-2-壬烯醇、顺-2-己烯醇、叶醇、正己醇。反-2-己烯醇与反-2-己烯醛出现的时期相反,表明C6醛、醇类物质在醇脱氢酶作用下发生转化,反-2-己烯醇与己烯酯类出现时期相符,说明其参与了酯类合成[38]。苯甲醛、苯甲醇、苯乙腈、苯乙醇、苯乙醛等芳香醛、醇类挥发物主要依赖于氨基酸代谢途径,色氨酸、络氨酸和苯丙氨酸在转氨酶的作用下生成2-酮酸,经脱羧酶作用生成醛,再在ADH作用下生成相应的醇。

酯类物质主要由脂肪酸、氨基酸代谢途径产生的醇类在醇酰基转移酶(alcohol acyltransferases,AAT)的作用下形成。由C6醛、醇所形成己烯酯和己酯是主要酯类,其中己酯类,如异戊酸己酯、苯甲酸己酯、丙酸己酯、丁酸己酯、己酸己酯、惕各酸己酯、戊酸己酯、乙酸己酯、异丁酸己酯在幼果期含量最高,随发育期逐渐降低,这说明参与己醛合成的3,2-烯醛异构酶和烯醛还原酶活性减弱;己烯酯类主要存在于幼果期至绿果期内,其中(3)-己烯酯在幼果期的含量较高,(2)-己烯酯在绿果期的含量较高,说明幼果期至绿果期内不饱和脂肪酸含量逐渐升高,底物充足;进入着色期后己烯酯与己酯挥发物含量减少,表明底物不饱和脂肪酸含量减少;直链脂肪族酯,如丁酸丁酯、丁酸戊酯、癸酸乙酯、己酸丁酯、辛酸乙酯、乙酸丁酯、乙酸戊酯、已酸乙酯主要由饱和脂肪酸经-氧化产生[39-40],主要出现在完熟期,说明该时期饱和脂肪酸含量增加,-氧化途径增强;丁酸-4-戊烯酯、丁酸香叶酯、丁酸异戊烯酯、丁酸异戊酯、己酸-4-戊烯酯、己酸异戊酯、梨醇酯、乙酸薄荷酯、乙酸橙花酯、乙酸芳樟酯、乙酸香茅酯、乙酸香叶酯、乙酸异戊烯酯、乙酸异戊酯等支链酯以含有支链的氨基酸为底物产生的醇、酸经酯化后形成;丙酸苄酯、丁酸苄酯、异戊酸苄酯、苯甲酸-顺-2-戊烯基酯、苯甲酸乙酯、苯乙酸乙酯等芳香酯,以苯丙氨酸为底物合成。支链酯和芳香酯主要出现在完熟期,说明该时期氨基酸含量增加,代谢活跃。支链酯和芳香酯在植物体内含量丰富,对果实香气有重要影响,乙酸异戊酯、丁酸异戊酯是具有强烈水果气味的酯,类似于香蕉或梨,是香蕉风味的关键成分[41]。

4 结论

不同发育阶段欧李果实挥发物成分与含量具有明显差异,代谢途径的不断更替决定了挥发物特征变化。香气成熟经历3个较为明显的发育过程,幼果期内参与挥发物合成的酶活跃度高,代谢途径复杂,产生的挥发物种类多,且多数与防御或应激反应有关;绿熟至商熟期以不饱和脂肪酸为底物的脂肪酸代谢为主,生成了大量己酯、己烯酯类挥发物,这些物质具有典型的青香特征;进入完熟期参与酯类合成的氨基酸代谢途径以及饱和脂肪酸-氧化与脱辅基类胡萝卜素裂解途径明显增强,出现支链酯与芳香酯类以及一定数量的环状单萜挥发物,这些物质多数具有明显花香与果香特征,对于成熟果实典型香气特征具有重要贡献。OAVs分布进一步表明果实芳香特征经历了由花香向果香转变的主要过程。综上所述,完熟期是欧李果实典型芳香特征形成的关键时期,稍晚于生理成熟期,适当延迟采收有助于其特征香型的形成与保留。

[1] DUDAREVA N, NEGRE F, NAGEGOWDA D A, ORLOVA I. Plant volatiles: Recent advances and future perspectives. Critical Reviews in Plant Ences, 2006, 25(5): 417-440.

[2] 米兰芳, 伊华林. 夏橙果实成熟期内香气成分动态变化分析. 赣南师范学院学报, 2011, 32(6): 103-108.

MI L F, YI H L. Dynamic analysis of aroma components of valencia sweet orange. Journal of Gannan Normal University, 2011, 32(6): 103-108. (in Chinese)

[3] MÉNAGER I, JOST M, AUBERT C. Changes in physicochemical characteristics and volatile constituents of strawberry (cv. Cigaline) during maturation.Journal of Agricultural and Food Chemistry, 2004, 52(5): 1248-1254.

[4] 刘朋, 赵毅, 赵利娟, 辛秀兰, 娄爽, 霍俊伟, 秦栋, 马旿晛, 刘煜池. 蓝果忍冬果实不同发育期香气成分构成及对比分析. 果树学报, 2016, 33(8): 977-984.

LIU P, ZHAO Y, ZHAO L J, XIN X L, LOU S, HUO J W, QIN D, MA W X, LIU Y C. Changes in the composition of aroma components in blue honeysuckle fruit at different developmental stages.Journal of Fruit Science, 2016, 33(8): 977-984. (in Chinese)

[5] 徐子健, 龙娅丽, 江雪飞, 乔飞, 党志国, 陈业渊. 山刺番荔枝果实发育进程中挥发性成分的组成分析. 果树学报, 2016, 33(8): 969-976.

XU Z J, LONG Y L, JIANG X F, QIAO F, DANG Z G, CHEN Y Y. Analysis of volatile components infruit at different developmental stages. Journal of Fruit Science, 2016, 33(8): 969-976. (in Chinese)

[6] 张序, 姜远茂, 彭福田, 何乃波, 李延菊, 赵登超. ‘红灯’甜樱桃果实发育进程中香气成分的组成及其变化. 中国农业科学, 2007, 40(6): 1222-1228.

ZHANG X, JIANG Y M, PENG F T, HE N B, LI Y J, ZHAO D C. Changes of aroma components in ‘Hongdeng’ sweet cherry during fruit development. Scientia Agricultura Sinica, 2007, 40(6): 1222-1228. (in Chinese)

[7] 张克坤, 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. ‘瑞都香玉’葡萄果实挥发性成分在果实发育过程中的变化. 中国农业科学 2015, 48(19): 3965-3978.

ZHANG K K, WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z. Evolution of volatile compounds during the berry development of ‘Ruidu Xiangyu’ grape. Scientia Agricultura Sinica, 2015, 48(19): 3965-3978. (in Chinese)

[8] YANG C X, WANG Y J, WU B H, FANG J B, LI S H. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chemistry, 2011, 128(4): 823-830.

[9] CARLOMAGNO A, SCHUBERT A, FERRANDINO A. Screening and evolution of volatile compounds during ripening of ‘Nebbiolo’, ‘Dolcetto’ and ‘Barber’ (L.) neutral grapes by SBSE-GC/MS.European Food Research and Technology, 2016, 242: 1221-1233.

[10] KALUA C M, BOSS P K. Evolution of volatile compounds during the development of Cabernet Sauvignon grapes (L.). Journal of Agricultural and Food Chemistry, 2009, 57(9): 3818-3830.

[11] YANG Y N, ZHENG F P, YU A N, SUN B G. Changes of the free and bound volatile compounds inL. f. fruit during ripening.Food Chemistry, 2019, 287: 232-240.

[12] 叶丽琴, 孙萌, 张忠爽, 刘海娇, 顾金瑞, 李卫东. 不同发育阶段欧李果实糖酸变化规律研究及相关性分析. 食品工业科技, 2017, 38(5): 98-102.

YE L Q, SUN M, ZHANG Z S, LIU H J, GU J R, LI W D. Analysis on the changes and correlations of sugar and organic acid contents in Chinese dwarf cherry [(Bge.)Sok. ] during different development stages. Science and Technology of Food Industry, 2017, 38(5): 98-102. (in Chinese)

[13] 李晓颍, 王海静, 徐宁伟, 曹翠玲, 刘建珍, 武春成, 张立彬. 顶空固相微萃取-气相色谱-质谱联用法分析欧李果实挥发性成分. 中国农业科学, 2019, 52(19): 3448-3459.

LI X Y, WANG H J, XU N W, CAO C L, LIU J Z, WU C C, ZHANG L B. Analysis of volatile components in(Bge.) Sok by headspace solid phase microextraction-gas chromatography-mass spectrometry. Scientia Agricultura Sinica, 2019, 52(19): 3448-3459. (in Chinese)

[14] BURDACK-FREITAG A, SCHIEBERLE P. Changes in the key odorants of Italian Hazelnuts (L. var. Tonda Romana) induced by roasting. Journal of Agricultural and Food Chemistry, 2010, 58(10): 6351-6359.

[15] 孙宝国, 陈海涛. 食用调香术. 第3版. 北京: 化学工业出版社, 2016.

SUN B G, CHEN H T. The Technology of Food Flavor. 3rd ed.. Beijing: Chemical Industry Press, 2016. (in Chinese)

[16] VAN GEMERT L J. Compilations of Odour Threshold Values in Air, Water and Other Media. Oliemans, Punter and Partners BV: Zeist, The Netherlands, 2011.

[17] GIRI A, OSAKO K, OHSHIMA T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chemistry, 2010, 120(2): 621-631.

[18] DU X F, FINN C E, QIAN M C. Volatile composition and odour-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chemistry, 2010, 119(3): 1127-1134.

[19] PINO J A, MESA J. Contribution of volatile compounds to mango (L.) aroma.Flavour and Fragrance Journal, 2010, 21(2): 207-213.

[20] BUHR K, KÖHLNHOFER B, HEILIG A, HINRICHS J, SCHIEBERLE P. Behaviour of selected flavour compounds in dairy matrices: Stability and release. Expression of Multidisciplinary Flavour Science, 2010: 165-168.

[21] 林翔云. 调香术. 北京: 化学工业出版社, 2008.

LIN X Y. Perfumery. Beijing: Chemical Industry Press, 2008. (in Chinese)

[22] FENG Y Z, SU G W, ZHAO H F CAI Y, CUI C, SUN S X, ZHAO M M. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test. Food Chemistry, 2015, 167: 220-228.

[23] AVERBECK M, SCHIEBERLE P. Influence of different storage conditions on changes in the key aroma compounds of orange juice reconstituted from concentrate. European Food Research and Technology, 2011, 232(1): 129-142.

[24] JOSHI R, GULATI A. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea.Food Chemistry, 2015, 167: 290-298.

[25] 魏建梅. 苹果(Borkh.)果实质地品质发育及采后调控的生理和分子基础[D]. 杨凌: 西北农林科技大学, 2009.

WEI J M. Study on physiological and molecular mechanism of fruit texture development and post-harvest regulation of apple (Borkh.) [D]. Yangling: Northwest Agriculture and Forestry University, 2009. (in Chinese)

[26] MATSUI K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 2006, 9(3): 274-280.

[27] SCHWAB W, DAVIDOVICH-RIKANATI R, LEWINSOHN E. Biosynthesis of plant-derived flavor compounds. Plant Journal, 2008, 54(4): 712-732.

[28] 吴函殷, 刘晓辉, 罗龙新, 何群仙. 12种单丛茶香气成分研究. 食品工业科技, 2019, 40(19): 234-239.

WU H Y, LIU X H, LUO L X, HE Q X. Study on aroma components in twelve kinds of Dancong teas. Science and Technology of Food Industry, 2019, 40(19): 234-239. (in Chinese)

[29] 朱云, 刘杨, 王桂荣, 杨斌. 引起小菜蛾盘绒茧蜂雌雄差异反应的气味筛选及行为学检测. 植物保护, 2018, 44(2): 29-37.

ZHU Y, LIU Y, WANG G R, YANG B. Sex-biased attraction ofby herbivore-induced plant volatiles. Plant Protection, 2018, 44(2): 29-37. (in Chinese)

[30] KENDRA P E, MONTGOMERY W S, DEYRUP M A, WAKARCHUK D. Improved lure for redbay ambrosia beetle developed by enrichment of α-copaene content. Journal of Pest Science, 2015, 89(2): 427-438.

[31] BEEKWILDER J, ALVAREZ-HUERTA M, NEEF E, VERSTAPPEN F W A, BOUWMEESTER H J, AHARONI A. State of the field: Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology, 2004, 135(4): 1865-1878.

[32] 葛水莲, 陈建中, 王有年. 桃果核木质化与过氧化物酶的关系. 西北农业学报, 2009, 18(4): 272-275.

GE S L, CHEN J Z, WANG Y N. Relationship of peroxidase and endocarp lignification of peach fruit. Acta Agriculturae Boreali- Occidentalis Sinica2009, 18(4): 272-275. (in Chinese)

[33] PICCINO S, BOULANGER R, DESCROIX F, SING A S C. Aromatic composition and potent odorants of the “specialty coffee” brew “Bourbon Pointu” correlated to its three trade classifications. Food Research International, 2014, 61: 264-271.

[34] AHARONI A, JONGSMA M A, KIM T Y, RI M B, GIRI A P, VERSTAPPEN F W A, SCHWAB W, BOUWMEESTER H J. Metabolic engineering of terpenoid biosynthesis in plants. Phytochemistry Reviews, 2006, 5(1): 49-58.

[35] LUAN F, MOSANDL A, MUNCH A, WUST M. Metabolism of geraniol in grape berry mesocarp ofL. cv. Scheurebe: Demonstration of stereoselective reduction,-isomerization, oxidation and glycosylation. Phytochemistry, 2005, 66(3): 295-303.

[36] LUND S T, BOHLMANN J. The molecular basis for wine grape quality-A volatile subject. Science, 2006, 311(5762): 804-805.

[37] Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Rosati C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 2011, 11: 24

[38] D’AURIA J C. Acyltransferases in plants: A good time to be BAHD. Current Opinion in Plant Biology, 2006, 9(3): 331-340.

[39] EL-SHARKAWY I, MANRÍQUEZ D, FLORES F B, REGAD F, BOUZAYEN M, LATCHÉ A, PECH J C. Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. identification of the crucial role of a threonine residue for enzyme activity. Plant Molecular Biology, 2005, 59(2): 345-362.

[40] GOEPFERT S, POIRIER Y.-Oxidation in fatty acid degradation and beyond.Current Opinion in Plant Biology, 2007, 10(3): 245-251.

[41] SURBURG H, PANTEN J. Common Fragrance and Flavor Materials: Preparation, Properties and Uses. Weinheim, Germany: Wiley-VCH, 2016.

Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development

1College of Horticulture Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, Hebei;2Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao 066600, Hebei

【】The component and content of volatiles in Chinese dwarf cherry fruit during its development were studied, and the characterization of odor types transform and possible involved metabolic pathways were revealed, in order to provide the data support for the metabolic mechanism and quality breeding of fruit aroma.【】The volatiles of Yanshan 1-Chinese dwarf cherry fruit were analyzed by headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC- MS), and the AMDIS, NIST11 and RI were applied to volatiles confirmation, and internal standard method to contents calculation. Then the odor-activity values (OAVs) and qualities were evaluated to define the odor types transformfeature and the main involved metabolic pathways.【】Total of 140 volatiles were detected, and the volatiles types was much more at young fruit stage than that at other stages; the volatiles contents increased considerably at green fruit stage, and esters and terpenoids were the main volatiles, up to 90% of content. The volatiles of green-type had rich content at young fruit and coloring stage, then significantly decreased at commercial ripen stage, floral-type was notably enhanced during the full ripen stage. OAVs indicated that floral fragrance was the main characteristic at young fruit and green ripen stage, then fruity feature increased and equivalent with floral feature which formed the typical mature fruit aroma at full ripen stage. The volatiles generated relied on the substrates and key enzymes participated, terpenoids derived from two parallel pathways, the mevalonate (MVA) pathway, and the methylerythritol 4-phosphate (MEP) pathway, aldehydes, alcohols, esters were via fatty acid and amino acid pathway. It showed complicated pathways maybe involved at young fruit stage, with more volatiles generated; the amino acids pathway related to esters and terpenoids were dramatically reduced, the unsaturated fatty acid pathway were obviously enhanced during green ripen stage to commercial ripen stage; then the saturated fatty acid and amino acid participate in ester synthesis, and-oxidation and cleavage of carotenoids in monoterpene pathways enhanced at following full ripen stage, with large of branch and aromatic esters and ring structure monoterpene formed.【】More pathways involved at early development stage, related to fruit development and environmental adaptation; the pathways of hexyl and hexene esters derived from linoleic and linolenic acid were strengthen and accumulated during green ripening stage; with the fruit growth rapidly, the volatiles synthesis decreased and the pathways transformed during coloring stage; then the pathways of branch and aromatic esters as cyclic monoterpenes of typical mature fruits aroma were markedly enhanced at following stages. Thus, the aroma mature maybe involved by three stages, refer to the young fruit stage, green fruit stage to commercial ripen stage, and full ripen stage; the mainly typical aroma substances were ripen at full ripen stage, and which was later than the physiological mature.

Chinese dwarf cherry; development stage; volatile components; odor type; metabolic pathway

10.3864/j.issn.0578-1752.2021.09.013

2020-07-08;

2020-11-06

河北省科技计划(15236802D)

通信作者李晓颖,E-mail:xiaoyingli_run@163.com

(责任编辑 赵伶俐)

猜你喜欢
酯类丁酸香型
本期卷首
中国白酒香型概念的提出及演化发展
丁酸梭菌的生物学功能及在水产养殖中的应用
复合丁酸梭菌发酵饲料及其在水产养殖中的应用前景
丁酸梭菌的筛选、鉴定及生物学功能分析
复合丁酸梭菌制剂在水产养殖中的应用
吹扫捕集/气相色谱-质谱法测定水中酯类化合物
延缓硝酸酯类耐药性的三项对策
毛细管气相色谱法分析白酒中的甲醇和酯类
广东凤凰单丛三种香型乌龙茶的理化与香气特性