新生儿缺氧缺血性脑病神经标志物研究进展

2021-06-02 06:28穆艳顺
中国医学创新 2021年11期
关键词:缺氧缺血性脑病新生儿

穆艳顺

【摘要】 新生儿缺氧缺血性脑病是造成新生儿致残及死亡的主要原因之一。随着新生儿急救水平的发展,新生儿缺氧性脑病患儿存活率显著提高。然而,新生儿缺氧缺血性脑病易导致神经系统发育障碍如脑瘫、癫痫及发育迟缓等,给患儿及其家庭、社会造成沉重负担。目前新生儿缺氧性脑病的各类检测方法都有优缺点,有部分患儿神经影像学检查无异常,却发展为脑瘫。因此,需要有更为敏感及特异度高的神经标志物来指导临床。为了更好地运用这些神经标志物对临床做指导,本研究将把神经标志物在新生儿缺氧缺血性脑病诊断的应用进行综述。

【关键词】 新生儿 缺氧缺血性脑病 神经标志物

[Abstract] Neonatal hypoxic ischemic encephalopathy is still one of the main causes of neonatal disability and death. With the development of the level of first aid for newborns, the survival rate of newborns with brain injury has been significantly improved. At the same time, neonatal hypoxic ischemic encephalopathy can easily lead to nervous system development disorders such as cerebral palsy, epilepsy and growth retardation, which cause serious burden to the children, their families and society. At present, all kinds of detection methods of neonatal hypoxic ischemic encephalopathy have their advantages and disadvantages, some children have no abnormal neuroimaging examination, but develop into children with cerebral palsy. Therefore, more sensitive and specific nerve markers are needed to guide clinical practice. In order to better use these nerve markers for clinical guidance, this study will elaborate the application of nerve markers in the diagnosis of neonatal hypoxic ischemic encephalopathy.

[Key words] Neonatal Hypoxic ischemic encephalopathy Neuro markers

First-authors address: The General Hospital of the North China Petroleum Administration, Renqiu 062552, China

doi:10.3969/j.issn.1674-4985.2021.11.046

新生兒缺氧缺血性脑病(HIE)是新生儿期常见疾病,是导致新生儿死亡和儿童神经系统功能障碍的主要原因。每年有0.1%~0.4%足月新生儿会受窒息及其HIE的影响[1]。新生儿窒息后神经能量在6~100 h内会减少。这种能量的消耗可诱导神经细胞凋亡,从而导致脑神经损伤。在脑损伤期间,不同的细胞内机制被激活,导致神经胶质增生、持续性炎症受体激活和表观遗传变化。上述病理生理阶段的综合作用,最终导致脑细胞死亡[2]。脑损伤的严重程度和时间,以及大脑成熟度是决定脑损伤严重程度的重要因素。34周以下早产儿是发生脑损伤的高危年龄,容易遗留神经系统后遗症。原因是在这个阶段脑组织体积、结构和功能的生长处于最高峰[3]。在新生儿脑损伤患者中,记忆和视觉感知功能障碍,容易导致患儿发育迟缓和入学时间延迟。部分脑损伤患儿遗留肢体残疾、脑瘫(CP)和智力障碍[4-5]。当前临床上常用神经标志物来预测新生儿脑损伤,本文现将新生儿缺氧缺血性脑病相关神经标志物做一综述,现报道如下。

1 神经元特异性烯醇化酶

神经元特异性烯醇化酶(neuron specific enolase,NSE)是葡萄糖酵解途径的关键酶,特异性分布在神经元和神经内分泌细胞的胞浆内。当新生儿发生缺氧缺血性脑损伤时,血脑屏障的通透性增高,NSE从受损的神经细胞内溢出,使脑脊液和血清中该酶含量增加,对早期判断缺氧缺血性脑损伤程度具有重要意义[6-7]。新生儿窒息脑损伤后NSE持续从受损的细胞内释放出来,加之缺氧缺血后,细胞能量代谢障碍,诱导了NSE过度的表达,窒息程度越严重,升高幅度越大,其与脑损伤程度呈正相关[8-9]。NSE与糖酵解密切相关,葡萄糖是维持脑代谢的最基本物质,脑的能量代谢几乎全部来自葡萄糖的有氧代谢,因此,缺氧缺血后引起的低血糖会造成患儿产生不同程度的脑损伤。NSE在发生脑损伤后可从损伤神经元中外漏,通过血脑屏障进入体液和血液,神经元损伤后NSE特异性升高,NSE是一种反映急性颅脑损伤炎性反应的指标[10]。足月新生儿HIE患儿,血清NSE水平在脑损伤后48 h内明显升高,并且在严重的HIE中更明显的升高,表明缺氧缺血再灌注损伤是HIE的重要机制[11]。NSE水平与脑损伤程度呈正相关,血清NSE的临界值>40.4 mg/L时,预测HIE的特异性和敏感性分别为70%和79%,故该指标联合MRI及脑电图预测HIE预后的精确性明显提高[12]。

2 S100B蛋白

S100B蛋白是一种酸性钙结合蛋白,其主要生物学功能是在细胞内、外起调节作用,诱导神经元和神经胶质细胞凋亡,在哺乳动物中主要集中于中枢神经系统的星形胶质细胞、垂体前叶细胞,具有脑组织特异性[13]。S100B蛋白的半衰期为2 h左右,对神经系统损伤具有较高的敏感度和特异度,在中枢神经系统损伤后明显增高,主要由肾脏清除[14]。当脑组织损伤后,脑脊液中升高的S100B蛋白可透过受损的血脑屏障进入血液循环,使血液中的S100B蛋白水平升高。S100B蛋白可反映中枢神经系统损伤的严重程度。因此S100B蛋白用于监测新生儿HIE的状况[15-16]。S100B与脑损伤程度、神经功能损害、长期预后相关。新生儿窒息后出现脑损伤的临床症状、实验室相关检查或超声相应体征前48~72 h即可检测到S100B浓度升高[17]。Nagdyman等[18]報道,脐带血中的S100B在新生儿窒息后脑损伤患儿中已经显著升高。新生儿窒息后S100B蛋白血清中含量与神经损伤程度有关,轻度窒息新生儿脑损伤轻,只要病情不再发展,S100B蛋白很快恢复正常。重度窒息患儿脑损伤严重,S100B蛋白可透过受损的血脑屏障进入血液循环,使血中S100B蛋白浓度增高[19]。在尿液中S100B蛋白水平可以预测新生儿HIE不良神经系统后遗症[20]。新生儿第一次排尿时,尿中S100B蛋白临界值>0.28 μg/L,预测HIE的预后的敏感度为100%,特异度为87.3%。出生后12~72 h测量尿S100B蛋白预测HIE的预后灵敏度和特异性分别达到100%和98.2%[21-22]。最近,在唾液中也检测到了S100B蛋白,S100B蛋白唾液水平在HIE患儿中升高。在唾液中S100B蛋白临界值>3.25 μg/L时,预测HIE达到了100%的灵敏度和特异度,可作为预测神经系统损伤的重要指标[23]。新生儿检查尿液、血清及脑脊液中S100B蛋白水平,成本低廉,能够随机进行动态观察,为一种早期诊断脑损伤的神经标志物。

3 Tau蛋白

Tau蛋白是一种属于微管相关蛋白家族的神经细胞支架蛋白,是脑内神经细胞骨架结构和轴突转运所必需的,主要分布于神经元细胞体和轴突的中枢神经系统内。维持神经元微管的稳定性和活性,调节神经元的生长发育,参与轴突生长,维持神经元极性形成和轴突传递具有重要作用。Tau蛋白水平在脑脊液(CSF)或血清升高可见于脑神经损伤如创伤性脑损伤、新生儿缺氧缺血性脑病、颅内出血、脑梗死等,可作为神经元和轴索损伤的标志物[24]。在脑损伤时,Tau蛋白从微管中滴下,游离Tau蛋白从中枢神经细胞释放到细胞外空间,脑脊液中升高的Tau蛋白可透过受损的血脑屏障进入血液循环,使血清中Tau蛋白浓度升高,检测血液和脑脊液中的Tau蛋白含量与脑损伤的严重程度呈正相关,Tau蛋白可作为脑损伤的敏感标志物[25]。Tau蛋白参与了新生儿缺氧缺血性脑损伤的发病过程,重度HIE组血清Tau蛋白水平高于中度HIE组,血清Tau蛋白水平与发育商呈明显负相关。HIE状态越严重,血清Tau蛋白水平越高,发育商越低,神经发育结局越差[26]。

4 肾上腺髓质素(adrenomedulin,ADM)

ADM是近年来发现的一种由52个氨基酸组成的新型血管活性肽,参与对缺氧和炎症的反应,这与新生血管形成有关。脑血管内皮细胞、神经元和胶质细胞是中枢神经系统合成和分泌肾上腺髓质素的重要场所。是人体降钙素基因相关肽超家族成员之一。在中枢神经系统中,ADM主要在神经元和内皮细胞中表达,在血管扩张中有作用,具有神经调节和抑制细胞凋亡[27]。在大鼠模型中,ADM可在下丘脑和尾壳核区域的神经元核中检测到,尾壳核区域是大脑中对损伤最敏感的区域之一,表明其参与了缺氧性脑损伤的过程[28]。动物模型的发现支持了ADM作为神经保护和血管神经再生因子的观点[29]。血氧浓度调控ADM的合成和释放,缺氧缺血造成脑细胞损伤,诱导脑血管内皮细胞、神经元和胶质细胞合成和分泌ADM增多,可反映中枢神经系统损伤的严重程度[30]。早期升高的ADM血浓度可预测发生HIE发生的风险[31]。ADM作为一种早期HIE诊断标志物,在血液中浓度达17.4 ng/L的临界值时,其预测HIE敏感度为100%,特异度为73.0%[32]。

5 胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)

GFAP是星形胶质细胞的骨架蛋白,对于维持星形胶质细胞形态结构的稳定至关重要,当出现缺氧性脑损伤时,星形胶质细胞死亡和活化增生,星形细胞胞体肥大、突起增长,血脑屏障通透性增加,脑脊液中GFAP的含量增加,可以透过血脑屏障进入血循环中,从而使血液中GFAP含量明显增加。研究表明,GFAP在判断脑损伤程度及预后上具有重要价值[33]。新生儿HIE患儿生后1周内血清GFAP含量明显高于健康新生儿,新生儿HIE患儿伴影像学异常的血清GFAP含量水平高于单纯影像学正常HIE的患儿,因而GFAP可以作为评估HIE的标志物[34]。Chalak等[35]报道GFAP阈值水平达0.08 pg/mL,预测发生新生儿缺氧缺血性脑病有100%的特异度。HIE的严重程度、MRI改变与GFAP阳性细胞数成正相关[36]。血清GFAP水平越高,HIE病情越严重,新生儿神经行为评分(NBNA)得分越低,因此检测血清GFAP可用于判断HIE患儿的病情程度和预后[37]。

6 激活素A(Activin A)

Activin A是一种糖蛋白激素,属于转化生长因子(transforming growth factor,TGF-β)超家族成员,其受体在脑组织中广泛存在。缺氧缺血脑损伤后,激活素A具有促进中枢神经系统神经保护作用和抗炎活性,增强巨噬细胞吞噬活性,提高机体免疫,抑制缺氧缺血脑细胞的凋亡及损伤性细胞因子的产生,缓解神经元损伤,从而减轻缺氧缺血性脑损伤。HIE患儿血清的激活素A表达水平增高,且脑损伤越重,表达水平越高,用于临床判定HIE严重程度,新生儿窒息后血液中激活素A含量显著高于非窒息组[38]。激活素A水平的增加与HIE的发生呈正相关,大脑缺氧窒息程度越重,血中激活素A水平越高,脑损伤越严重,对新生儿缺氧缺血性脑病的严重程度和预后评估具有重要作用[39]。对足月新生儿的脑脊液进行激活素A检测发现,出生有窒息史的新生儿脑脊液中激活素A水平明显高于无窒息史的新生儿。在有窒息史的新生儿中,出生后7 d内出现严重HIE患儿脑脊液激活素A水平明显高于无HIE患儿,提示缺氧可触发激活素A的释放,有助于HIE的判断及早期干预[40]。在新生儿窒息后中、重度HIE患儿尿液中激活素A含量,明显高于轻度HIE患儿及无HIE患儿,以尿激活素A含量达0.08 ng/L为临界值预测中、重度HIE的发生,其敏感性及特异性为83.3%和100%[41]。

综上所述,神经标志物的检测在临床应用越来越广泛,这些神经标志物的检测结果结合影像学检查,不仅可以更准确地了解HIE的程度,而且可评价临床治疗方案的效果,且神经标志物的检测方便,价格便宜,值得临床推广。

参考文献

[1] Angela S,Francesca P,Francesca G,et al.The potentials and limitations of neuro-biomarkers as predictors of outcome in neonates with birth asphyxia[J].Early Hum Dev,2017,105:63-67.

[2] Ferriero D M.Neonatal brain injury[J].N Engl J Med,2004,351(19):1985-1995.

[3] Fleiss B,Gressens P.Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?[J].Lancet Neurol,2012,(11):556-566.

[4] Derganc M,Osredkar D.Hypoxic-ischemic brain injury in the neonatal period[J].Zdrav Vestn,2008,77(Suppl 2):51-54.

[5] Miller S P,Ramaswamy V,Michelson D,et al.Patterns of brain injury in term neonatal encephalopathy[J].J Pediatr,2005,146(4):453-460.

[6] Lv H,Wang Q,Wu S,et al.Neonatal hypoxic ischemic an-Eephalopathy related biomarkers in serum and cerebrospinal fluid[J].Clinica Chimica Acta,2015,450:282-297.

[7] Gazzolo D,Abella R,Marinoni E,et al.Circulating biochemical markers of brain damage in infants complicated by ischemia reperfusion injury[J].Cardiovasc Hematol Agents Med Chem,2009,7(2):108-126.

[8] Johnsson P,Blomquist S,Lührs C,et al.Neuron specific enolase increases in plasma during and immediately after extmeorporeal circuhtion[J].Ann Tnorac Surg,2000,69(3):750-754.

[9] Selakovic V.Neuron specific enolase in cerebrospinal fluid and plasma of patients with acute ischemic brain disease[J].Med Pregl,2003,56(7-8):326-332.

[10] Ondruschka Benjamin,Pohlers D,Sommer G,et al.S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases[J].J Neurotrauma,2013,30(22):1862-1871.

[11] Sun J,Li J,Cheng G,et al.Effects of hypothermia on NSE and S-100 protein levels in CSF in neonates following hypoxic/ischaemic brain damage[J].Acta Paediatr,2012,101(8):316-320.

[12] Celtik C,Acunas B,Oner N,et al.Neuron-speci?c enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy[J].Brain Dev,2004,26(6):398-402.

[13] Florio P,Abella R,Marinoni E,et al.Biochemical markers of perinatal brain damage[J].Front Biosci,2010,2:47-72.

[14] Jonsso H,Johnsson P,Hoglund P,et al.Elimination of S100B and renal function after cardiac surgery[J].J Cardiothorac Vasc Anesth,2000,14(6):698-701.

[15] Blennow M K,Savman P,Ilves M,et al.Brain-speci?c proteins in the cerebrospinal ?uid of severely asphyxiated newborn infants[J].Acta Paediatr,2001,90:1171-1175.

[16] Chalak L F,Sánchez P J,Adams-Huet B,et al.Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy[J].J Pediatr,2014,164(3):468-474.

[17] Gazzolo D,Di Iorio R,Marinoni E,et al.S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage[J].Crit Care Med,2002,30(6):1356-1360.

[18] Nagdyman N,K?men W,Ko H K,et al.Early biochemical indicators of hypoxic ischemic encephalopathy after birth asphyxia[J].Pediatr Res,2001,49(4):502-506.

[19] Murabayashi M,Minato M,Okuhata Y,et al.Kinetics of serum S100B in newborns with intracranial lesions[J].Pediatr Int,2008,50(1):17-22.

[20] Gazzolo D,Marinoni E,Iorio R D,et al.Measurement of urinary S100B protein concentrations for the early identi?cation of brain damage in asphyxiated fullterm infants[J].Arch Pediatr Adolesc Med,2003,157(12):1163-1168.

[21] Gazzolo D,Marinoni E,Iorio R D,et al.Urinary S100B protein measurements: a tool for the early identi?cation of hypoxic-ischemic encephalopathy in asphyxiated full-term infants[J].Crit Care Med,2004(32):131-136.

[22] Gazzolo D,Frigiola A,Bashir M,et al.Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death[J].PLoS One,2009,4(2):e4298.

[23] Gazzolo D,Pluchinotta F,Bashir M,et al.Neurological abnormalities in full-term asphyxiated newborns and salivary S100B testing: the “Cooperative Multitask against Brain Injury of Neonates”(CoMBINe) international study[J].PLoS One,2015,10(1):e0115194.

[24] Bitsch A,Horn C,Kemmling Y,et al.Serum Tau Protein Level as a marker of axonal damage in acute ischemic stroke[J].Eur Neurol,2002,47(1):45-51.

[25] Franz G,Beer R,Kampfl A,et al.Amyloid betaI-42 and tau in cerebrospinal fluid after severe traumatic brain injury[J].Neurology,2003,60(9):1457-1461.

[26] Lv H Y,Wu S J,Gu X L,et al.Predictive Value of Neurodevelopmental Outcome and Serum Tau Protein Level in Neonates with Hypoxic Ischemic Encephalopathy[J].Clin Lab,2017,63(7):1153-1162.

[27] Gazzolo D,Abella R,Frigiola A,et al.Neuromarkers and unconventional biological ?uids[J].J Matern Fetal Neonatal Med,2010,23(Suppl):66-69.

[28] Serrano J,Alonso D,Encinas J M,et al.Adrenomedullin expression is up-regulated by ischemia-reperfusion in the cerebral cortex of the adult rat[J].Neuroscience,2002,109(4):717-731.

[29] Miyashita K,Itoh H,Arai H,et al.The neuroprotective and vasculo neuroregenerative roles of adrenomedullin in ischemic brain and its therapeutic potential[J].Endocrinology,2006,147(4):1642-1653.

[30] Xu L,Sun J,Lu R,et al.Effect of glutamate on inflammatory responses of intestine and brain after focalcerebral ischemia[J].World J Gastroenterol,2005,11(5):733-736.

[31] Iorio R D,Marinoni E,Lituania M,et al.Adrenomedullin increases in term asphyxiated newborns developing intraventricular hemorrhage[J].Clin Biochem,2004,37(12):1112-1116.

[32] Florio P,Abella R,Marinoni E,et al.Adrenomedullin blood concentrations in infants subjected to cardiopulmonary bypass: correlation with monitoring parameters and prediction of poor neurological outcome[J].Clin Chem,2008,54(1):202-206.

[33] Bembea M M,Savage W J,Strouse J J,et al.Glial brillary acidic protein as a brain injury biomarker in children undergoing extra-corporeal membrane oxygenation[J].Pediatr Crit Care Med,2011,12(5):572-579.

[34] Ennen C S,Huisman T A G M,Savage W J,et al.Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling[J].Am J Obstet Gynecol,2011,205(3):1-7.

[35] Chalak L F,Sanchez P J,Adams-Huet B,et al.Biomarkers for severity of neonatal hypoxicischemic encephalopathy and outcomes in newborns receiving hypothermia therapy[J].J Pediatr,2014,164(3):468-474.

[36] Luisi S,Florio P,Reis F M,et al.Expression and secretion of activin A:possible physiologicaland clinical implications[J].Eur J Endocrinol,2001,145(3):225-236.

[37] Douglas-Escobar M,Weiss M D.Biomarkers of brain injury in the premature infant[J].Front Neurol,2013,3:185.

[38] Florio P,Perrone S,Luisi S,et al.Activin A plasma levels at birth:an index of fetal hypoxia in preterm newborn[J].Pediatr Res,2003,54(5):696-700.

[39] Jenkin G,Ward J,Hooper S,et al.Feto-placental hypoxemia regulates the release of fetal activin A and prostaglandin E[J].Endocrinology,2001,142(5):963-966.

[40] Florio P,Luisi S,Bruschettini M,et al.Cerebrospinal ?uid activin a measurement inasphyxiated full-term newborns predicts hypoxic ischemic encephalopathy[J].Clin Chem,2004,50(12):2386-2389.

[41] Florio P,Luisi S,Moataza B,et al.High urinary levels of activin A in asphyxiated full-term newborns with moderate or severe hypoxic ischemic encephalopathy[J].Clin Chem,2007,53(3):520-522.

(收稿日期:2020-07-15) (本文编辑:刘蓉艳)

猜你喜欢
缺氧缺血性脑病新生儿
非新生儿破伤风的治疗进展
脐静脉置管在危重新生儿救治中的应用
防城港市2016—2021年新生儿死亡原因分析
新生儿需要睡枕头吗?
新生儿出生后该怎样进行护理?
新生儿缺氧缺血性脑病63例临床分析
经颅彩超在新生儿缺氧缺血性脑病中的应用价值
新生儿缺氧缺血性脑病的早期MRI诊断
舒适护理对新生儿缺氧缺血性脑病预后的影响
细辨新生儿的“异常信号”