石化工业园员工PAHs的皮肤暴露及健康风险

2022-12-19 12:56罗孝俊管克兰吕银知曾艳红麦碧娴
中国环境科学 2022年11期
关键词:显著性部位人体

郭 建,罗孝俊,管克兰,吕银知,曾艳红,麦碧娴

石化工业园员工PAHs的皮肤暴露及健康风险

郭 建1,2,罗孝俊1*,管克兰1,2,吕银知1,2,曾艳红1,麦碧娴1

(1.中国科学院广州地球化学研究所,有机地球化学国家重点实验室与广东省资源环境利用与保护重点实验室,广东 广州 510640;2.中国科学院大学,北京 100049)

本文选取典型石化城市茂名市某石化工业园30名员工(男女各15名)进行裸露(额头、手掌)和遮蔽皮肤部位(前臂、小腿)的擦拭采样,通过气相色谱-质谱联用仪(GC-MS)测定了擦拭样品中15种多环芳烃的浓度(∑15PAHs)并计算了经皮肤暴露和手-口接触的人体暴露剂量.结果表明,皮肤样品中∑15PAHs的浓度范围为21~1.9×104ng/m2,不同部位间PAHs浓度存在显著性差异(<0.01),表现为额头>手掌>前臂>小腿.PAHs以3~4环PAHs组成为主.男女性别间PAHs组成无显著差异,∑15PAHs女性高于男性,但无统计差异性.经皮肤吸收的PAHs日暴露剂量(DADderm)女性[41ng/(kg×d)]显著高于男性[28ng/(kg×d)].手-口接触暴露剂量[0.34ng/(kg×d)]相比于皮肤暴露剂量[34ng/(kg×d)]可忽略不计.皮肤暴露剂量主要来自裸露部位皮肤的贡献(88%).风险评价结果表明,PAHs的皮肤暴露和手-口接触暴露不存在明显的非致癌风险;但约7%员工的皮肤致癌风险高于可接受的水平(10-4),表明存在一定的PAH致癌风险.

多环芳烃;石化员工;皮肤暴露;健康风险

进入环境中的多环芳烃(PAHs)可通过消化道、呼吸道和皮肤等各种途径进入人体,并对人体健康产生潜在的负面效应,从而对人体的呼吸系统、循环系统、神经系统、肝脏、肾脏等造成损伤[1-4].目前有16种PAHs被美国环境保护署(USEPA)列为优先控制的有机污染物.

当前,呼吸系统暴露和饮食暴露是人体污染物暴露研究的重点.研究表明,成人对于PM2.5中PAHs的呼吸暴露风险高于儿童,人们在冬季的PAHs呼吸暴露风险高于其他季节[5-6];燃煤或燃柴的家庭居民,因PAHs呼吸暴露可能存在较高的致癌风险[7].许多流行病学研究表明,人类的部分癌症与饮食相关,包括通过饮食摄入PAHs[8-10].食物中的PAHs水平取决于其所处环境的PAHs水平以及食物自身的特性[11].皮肤暴露也是人体污染物暴露的一个重要途径[12-14].皮肤吸附有机污染物的途径包括接触含污染物的介质(如附着于皮肤表面的颗粒物)、直接从空气中以及衣物中吸收等.通过对户外烧烤人群的PAHs暴露研究发现[15],皮肤对于低分子PAHs的摄入大于呼吸摄入,通过皮肤暴露排出的羟基PAHs与通过皮肤和呼吸联合暴露排出的剂量相当.对于有机污染物的皮肤暴露剂量更多是通过环境中污染物浓度的测定,然后应用模型对皮肤暴露的剂量进行估算[16-17].当前,关于人体皮肤擦拭样品及皮肤模拟吸收的研究逐渐增加[18].然而,与饮食暴露和呼吸系统暴露的研究相比,直接利用人体皮肤擦拭样品研究PAHs皮肤暴露的研究仍较少.精细化不同皮肤部位的暴露贡献研究仍不多见,皮肤暴露与手-口接触暴露的相对重要性仍存有争议[19].

本研究以中国南方重要的石油化工基地茂名市一个典型的石化工业园区为研究区域,以该园区的员工为研究对象,通过对员工不同部位皮肤擦拭样品的分析,以期了解人体皮肤不同部位PAHs的暴露情况,计算皮肤吸收与手-口接触的人体PAHs暴露剂量,并评价其健康风险,为全面评价人体PAHs暴露及风险提供参考.

1 材料与方法

1.1 样品采集

于2020年12月下旬,在茂名市某石化工业园区对30名从业时间1a以上的员工(男女各15名)进行采样.采样前,使用索氏抽提法(二氯甲烷)对采样纱布块(7.5cm×7.5cm)净化72h,纱布经真空干燥后,用锡箔纸包裹紧密并密封于样品袋中,置于零下20℃保存备用.采样人员配戴一次性手套,用异丙醇将已净化的纱布浸泡至湿润状态,每个采样部位使用1块纱布,用纱布正反面分别擦拭采样部位的表皮肤3次,再迅速将纱布块用锡箔纸包裹紧密并密封于样品袋内,置于零下20℃保存.同时采集场地空白对照样品(将纱布置于空气中约20s替代擦拭操作).使用软尺测量采样对象的额头、手臂、小腿采样部位的表面积数据;使用坐标纸计算手掌采样部位表面积;测量采样对象的身高和体重.要求被采样者采样前2h内不能水洗取样部位.

1.2 样品前处理

1.3 样品分析

使用气相色谱-质谱联用仪(SHIMADZU GC- MS-QP2020NX),在电子轰击离子源(EI)及离子检测(SIM)模式下进行样品分析.载气为高纯氦气,流速为1mL/min.进样口温度为290℃,离子源温度为230℃,传输线温度为280℃.在高压不分流模式下自动进样器进样量为1μL.目标化合物使用色谱柱Rtx-5MS(30m×0.25mmID×0.25um,SHIMADZU)进行分离.色谱柱升温程序如下:初始温度80℃,保留5min,以4℃/min升温至310℃,保留15min.16种目标PAHs与分子标志物的仪器检出限为0.08~6.6ng.因萘具有较强的挥发性导致较低的回收率,萘不纳入后续数据处理分析,本研究目标化合物为15种 PAHs(见表1),均属于US EPA公布优先控制的PAHs污染物.

1.4 质量保证与控制

1.5 PAHs的皮肤及手-口接触暴露剂量

石化员工体表皮肤PAHs的每日平均摄入量(DADderm) 采用渗透系数模型进行计算,具体见式(1).PAHs的手-口接触每日平均摄入量(DADoral)按照式(2)进行计算[12,16,20-22].

式中:face、hand、arm和others分别为头颈部、双手、双上臂及双前臂、小腿和其他部位皮肤表面的PAHs浓度,ng/m2;face、hand、armothers分别为头颈部、双手、双上臂及双前臂、小腿和其他部位的皮肤表面积,m2;p-l指皮肤表面脂质层PAHs的渗透系数,μm/h,其为化合物分子量与辛醇-水分配系数的函数,具体计算过程参见文献[16];ED指暴露时间,h/d,按员工的实际工作时间取值8h/d;m指皮肤表面脂层厚度,μm,取值1.3μm[21];TE指转换率,取值50%[23];SAC指接触手掌表面积的比例,取值10%[24];EF指暴露频率,contacts/d,相关文献取值24contacts/d[23],本文按员工实际暴露时间取值8contacts/d;BW指体重,kg.

人体体表总面积参照文献[25],使用身高及体重数据进行计算,见式(3)和式(4).

(4)

式中:w-male和w-female分别为男性和女性人体总表面积,m2;指身高,cm.其他部位表面积根据《人体损伤致残程度分级》的“体表面积的九分估算法”进行计算[26].其中头颈部占人体体表总表面积的9%,浓度采用额头的PAHs浓度;双上臂及双前臂占人体体表总表面积的13%,浓度采用前臂的PAHs浓度;双手占人体体表总表面积的5%,浓度采用手掌的PAHs浓度;其他部位(前躯、后躯、双大腿、双小腿、双足、臀部、会阴等)占人体体表总表面积的73%,浓度采用小腿的PAHs浓度.

1.6 健康风险评价方法

1.6.1 非致癌风险 通过非致癌风险的风险商值(HQs)和风险指数(HI)评价石化员工PAHs的皮肤和手-口接触暴露健康风险,见式(5)和式(6)[27].

式中:RfDderm-i和RfDoral-i分别代表PAHs单体的皮肤和手-口接触暴露的参考剂量,ng/(kg·d);EF指每年暴露的天数,根据员工实际工作天数取值,312d; AT指每年的总天数,取值365d;HI为不同PAHs单体风险商值之和,当HI值<1时,表明石化员工不存在明显的非致癌风险;当HI值>1时,表明石化员工可能存在潜在的非致癌影响.因缺乏部分PAHs的RfDderm和RfDoral数据,本研究只选用苊、芴、蒽、荧蒽、芘和苯并[a]芘6种PAHs进行石化员工的非致癌健康风险评价.

1.6.2 致癌风险 采用苯并[a]芘毒性当量因子计算PAHs各单体的等效致癌毒性浓度(TEC),评估 PAHs 的皮肤暴露致癌风险,见式(7)[27]:

TEC=C´TEF(7)

PAHs 的皮肤暴露致癌风险(CSR)和手-口接触暴露致癌风险(COR)见式(8)和式(9):

式中:CSF代表基于苯并[a]芘的皮肤摄入致癌斜率因子,取值37.47×10-6[ng/(kgBW×d)][29],EF取值312d,AT取值365d;DADderm-BaP、DADoral-BaP分别代表DADderm、DADoral的苯并[a]芘当量总浓度. USEPA 将致癌风险划分为:可接受致癌风险水平(Risk<10-4),不可接受致癌风险水平(Risk³10-4)[30].

2 结果和讨论

2.1 皮肤擦拭样PAHs的含量及组成特征

由表1可见,除DahA及BghiP在样品中未检出外,其他13种PAHs均有不同程度的检出.3~4环PAHs的检出率和浓度均高于5~6环PAHs,这与李大雁等对某大型石化企业邻近工业区大气沉降中的PAHs研究结果一致[31].皮肤擦拭样品∑15PAHs的浓度范围为21~1.9×104ng/m2,无论男女,不同部位之间的∑15PAHs浓度均存在显著性差异(单因素因子分析,<0.01),表现为额头>手掌>前臂>小腿(图1),其浓度范围分别为3.6×103~1.9×104,170~ 1.7×103,49~1.6×103,21~490ng/m2,相应的几何平均浓度为6.7×103,630,200,91ng/m2.石化员工裸露皮肤部位的S15PAHs浓度显著高于衣物遮蔽部位,S15PAHs浓度最高部位(额头)与浓度最低部位(小腿)之间的几何平均浓度相差约74倍.由此可见,直接裸露的皮肤更容易吸附PAHs,衣物可有效阻隔和减少皮肤对PAHs的吸附.有研究表明,洁净的衣物可有效减少气相半挥发性有机污染物(SVOCs)的暴露,相反,受污染的衣物可放大气相SVOCs的暴露[32]. Gong等[33]对人体皮肤擦拭样品中邻苯二甲酸酯浓度进行研究,结果表现为手掌>手背>前臂³额头.Cao等[12]对多氯联苯、多溴联苯醚的皮肤擦拭样品的研究也发现手掌的浓度要高于额头,这与本研究正相反.邻苯二甲酸酯、多溴联苯醚及多氯联苯都是人为制造的工业品,添加于很多工业品或者商用品中.手与物品接触是该类化合物重要的暴露途径.而PAHs不添加于任何工业品中,缺乏这一暴露途径,这可能是其手掌浓度相对较低的原因.国外学者对铺路工人手掌部位PAHs浓度的检测结果为7.8×104ng/m2(16种PAHs)[34]、2.2×104ng/m2(9种PAHs)[35],比石化员工手掌部位的PAHs浓度高约2个数量级.

表1 15种PAHs的检出率及浓度范围

注: MDL为方法检出限(method detection limit).

男女性∑15PAHs浓度范围分别为33~1.3×104, 21~1.9×104ng/m2,相应的几何平均浓度为490, 570ng/m2.同一部位样品的∑15PAHs浓度都表现为女性>男性(图1),但不存在统计学意义上的显著性(额头:= 0.19,手掌:= 0.52,前臂:= 0.20,小腿:= 0.48).

图1 不同采样部位及不同性别间的PAHs浓度

箱图方框的下端和上端分别是数据的第25位和第75位百分位数;方框中的横线为中位数;圆圈代表极端值

如图2,对不同环数PAHs占总PAHs的比例分析可知,男性和女性,不同部位之间PAHs的组成变异性均较大,总体表现为3环>4环>5~6环,比例分别为15%~83%,4%~73%和

2.2 PAHs的皮肤及手-口接触暴露剂量

30名员工15种PAHs的体表皮肤每日平均摄入量(DADderm)及经手-口接触每日平均摄入量(DADoral)范围分别为17~69,0.10~0.92ng/(kg·d),几何平均值分别为34,0.34ng/(kg·d),两者相差约100倍,由此可见,相对PAHs的皮肤暴露途径而言,经手-口接触暴露的剂量可忽略不计.

进一步对员工裸露皮肤部位(头颈部、手掌)和衣物遮蔽皮肤部位的DADderm分析可知,裸露部位和遮蔽部位的DADderm范围分别为16~65,0.86~ 14ng/(kg·d),几何平均值分别为29,3.6ng/(kg·d),裸露部位的DADderm显著高于遮蔽部位(<0.01),两者的贡献率分别为88%和12%.由此可见,虽然人体遮蔽部位的表面积比例(86%)大于裸露部位(14%),裸露部位仍是人体皮肤摄入PAHs的主要部位.这与多氯联苯(PCBs)、多溴联苯醚(PBDEs)污染物的暴露部位贡献明显不同,PCBs和PBDEs在遮蔽部位的贡献大于裸露部位[12].额头PAH浓度高于其他部位PAH浓度几个数量级是造成这种差异的主要原因.因此、脸部清洁应是有效降低人体皮肤PAH摄入的有效方式.

对30名员工不同性别之间的DADderm及DADoral分析可知(图3),DADderm及DADoral均表现为女性>男性.其中,男女性DADderm的范围分别为17~53,27~69ng/(kg·d),几何平均值分别为28,41ng/ (kg·d),两者间存在显著性差异(<0.01);男女性DADoral的范围分别为0.10~0.92,0.10~0.87ng/(kg·d),几何平均值分别为0.32,0.36ng/(kg·d),两者间不存在显著性差异(= 0.44).

2.3 PAHs的健康风险评价

2.3.1 非致癌风险评价 30名石化员工6种PAHs的HI范围为9.5×10-5~1.2×10-2,说明石化员工的皮肤和手-口接触暴露不存在明显的非致癌风险,这与国外学者对于石化工业排放的挥发性有机化合物(VOCs)导致的非致癌风险研究结果一致(HI< 1)[36-37].进一步对30名石化员工不同类别HI值总和的贡献率分析可知,皮肤暴露的HI值总和(HIderm)和手-口接触暴露的HI值总和(HIoral)对HItotal的贡献率分别为97.2%和2.8%(表2);裸露皮肤部位的HI值总和(HIbare)和衣物遮蔽皮肤部位的HI值总和(HIcover)对HIderm的贡献率分别为94.7%和5.3%,两者之间存在显著性差异(<0.01);男性皮肤HI值总和(HIderm-male)和女性皮肤HI值总和(HIderm-female)对HIderm的贡献率分别为51.9%和48.1%,两者之间不存在显著性差异(=0.89);男性手-口接触暴露的HI值总和(HIoral-male)和女性手-口接触暴露的HI值总和(HIoral-female)对HIoral的贡献率分别为46.0%和54.0%,两者之间不存在显著性差异(= 0.74).

2.3.2 致癌风险评价 30名石化员工15种PAHs的TEC范围为1.1~510ng/m2,几何平均值为30ng/m2.人体裸露和遮蔽皮肤部位的TEC范围分别为6.7~3.6×103和0.038~22ng/m2,几何平均值分别为160和2.5ng/m2,两者之间存在显著性差异(<0.01);男性和女性样品的TEC范围分别为1.1~410和3.9~510ng/m2,几何平均值均为30ng/m2,两者之间不存在显著性差异(=0.94).30名石化员工3~6环PAHs的TEC值总和贡献率分别为0.5%、0.5%、98.5%和0.5%(图4).浓度贡献率只有20.9%的5环PAHs贡献了98.5%的致癌风险,其中浓度贡献率只有9.3%的单体BaP贡献了90.8%的致癌风险,这与珠江三角洲城市大气中PAHs的致癌风险相似,浓度贡献率约20%的5环PAHs贡献了超过70%的致癌风险[38].

表2 不同暴露途径、暴露部位及性别的HI值贡献率

30名石化员工15种PAHs的CSR范围为9.0×10-7~1.3×10-4,CSR的平均值为2.3×10-5,其中处于可接受致癌风险水平范围的员工比例为93%,处于不可接受致癌风险水平范围的员工比例为7%.男性和女性的CSR范围分别为9.0×10-7~1.1×10-4和2.0×10-6~1.3×10-4,两者之间不存在显著性差异(= 0.94).30名石化员工15种PAHs的COR范围为4.0× 10-9~4.7×10-6,COR的平均值为7.5×10-7,均处于可接受的致癌风险水平范围.

国内外的研究结果表明,石化园区比非石化园区的PAH暴露与致癌风险水平普遍较高.如中国南方某石化工业园区周边0.5km内居民的PAHs呼吸暴露致癌风险为1.2×10-4[39],马来西亚某石化工业园区5km内的3所小学儿童吸入PAHs的致癌风险为2.2×10-6[40],中国长江三角洲[41],中国台湾[42],西班牙加泰罗尼亚[43],韩国大邱[44]等地区石化工业排放的VOCs致癌风险分别为1.1×10-5,9.3×10–5~1.7×10–4, 2.2×10−5~4.4×10−4,2.6×10−4.而非石化园区,如中国南方农村居民冬季家庭污染气体中PAHs的致癌风险为8.1×10-6[45],中国宝鸡市冬季PM2.5中成年人PAHs暴露的致癌风险为3.8×10-6[46],马来西亚某石化工业园区20km外的3所小学儿童吸入PAHs的致癌风险为3.0×10-9[40];美国洛杉矶城市通勤者在路途中PAHs暴露的致癌风险为1.2×10-9[47].因此,石化工业排放的PAHs污染问题应当引起重视,受其影响的人群应注意做好个人防护措施,如尽量减少裸露的皮肤面积,注意个人卫生,勤洗手洗脸洗澡,及时更换脏衣物等.

图4 石化员工各环PAHs的浓度贡献率与TEC贡献率

3 结论

3.1 皮肤擦拭样品中∑15PAHs浓度表现为额头(6.7×103ng/m2)>手掌(630ng/m2)>前臂(200ng/m2)>小腿(91ng/m2);裸露皮肤部位的∑15PAHs浓度显著高于衣物遮蔽皮肤部位,说明直接暴露的皮肤更容易吸附PAHs,衣物可有效阻隔和降低皮肤对PAHs的吸附;不同性别样品的S15PAHs浓度表现为女性[41ng/(kg×d)]>男性[28ng/(kg×d)],但不存在显著性.

3.2 石化员工15种PAHs的DADderm比DADoral高约100倍,相对PAHs的皮肤暴露途径而言,手-口接触暴露的剂量可忽略不计.两性间的DADderm及DADoral均表现为女性>男性,但只有两性间的DADderm存在显著性差异(<0.01).

3.3 皮肤暴露对员工不存在明显的非致癌风险,但约有7%的员工皮肤暴露导致皮肤癌的风险超过可接受水平,表明存在致癌风险,而手-口接触暴露途径的致癌风险均在可接受水平.

[1] 刘明洋,李会茹,宋爱民,等.环境和人体中氯代/溴代多环芳烃的研究进展—污染来源,分析方法和污染特征 [J]. 中国环境科学, 2021, 41(4):1842-1855.

Liu M Y, Li H R, Song A M, et al. A review of chlorinated/brominated polycyclic aromatic hydrocarbons in the environment and human: sources, analysis methods and pollution characteristics [J]. China Environmental Science, 2021,41(4):1842-1855.

[2] Shaw G R, Connell D W. DNA adducts as a biomarker of polycyclic aromatic hydrocarbon exposure in aquatic organisms: relationship to carcinogenicity [J]. Biomarkers, 2001,6(1):64-71.

[3] 付建平,赵 波,黎玉清,等.废旧轮胎翻新过程中多环芳烃排放及健康风险 [J]. 环境科学, 2018,39(6):2963-2970.

Fu J P, Zhao B, Li Y Q, et al. Discussion of emissions and health risk of polycyclic aromatic hydrocarbons (PAHs) from the retreading process of waste tires [J]. Environmental Science, 2018,39(6):2963- 2970.

[4] 张 晗,陈 昱,吕占禄,等.沟塘水质及其周边浅层地下水PAHs的风险评价 [J]. 中国环境科学, 2021,41(8):3808-3815.

Zhang H, Cheng Y, Lv Z L, et al.Risk assessment of PAHs in ditch pond water and its surrounding shallow groundwater [J]. China Environmental Science, 2021,41(8):3808-3815.

[5] 贺博文,聂赛赛,李仪琳,等.承德市PM2.5中多环芳烃的季节分布特征、来源解析及健康风险评价 [J]. 环境科学, 2022,43(5):2343- 2354.

He B W, Nie S S, Li Y L, et al. Seasonal distribution characteristics, source analysis, and health risk evaluation of PAHs in PM2.5in Chengde [J]. Environmental Science, 2022,43(5):2343-2354.

[6] Xia Z, Duan X, Tao S, et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China [J]. Environmental Pollution, 2013,173:150-156.

[7] 彭 彬,苏玉红,杜 伟,等.湖北农村燃柴和燃煤家庭大气多环芳烃污染特征和呼吸暴露风险 [J]. 生态毒理学报, 2018,13(5):171-181.

Peng B, Su Y H, Du W, et al. Household air pollution by polycyclic aromatic hydrocarbons in homes burning wood and coals and inhalation exposure risks in rural Hubei [J]. Asian Journal of Ecotoxicology, 2018,13(5):171-181.

[8] 于紫玲,林 钦,孙闰霞,等.海南岛沿海牡蛎体中PAHs的时空分布及其健康风险评价 [J]. 中国环境科学, 2015,35(5):1570-1578.

Yu Z L, Lin Q, Sun R X, et al. Spatial-temporal distribution and health risk assessment of polycyclic aromatic hydrocarbons in oysters along the coast of Hainan Island. [J]. China Environmental Science, 2015, 35(5):1570-1578.

[9] Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer [J]. Nutrition Research, 2013,33(12):983-994.

[10] Harris K L, Banks L D, Mantey J A, et al. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis [J]. Expert. Opin. Drug. Metab. Toxicol., 2013,9(11): 1465-1480.

[11] Martorell I, Perello G, Marti-CID R, et al. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend [J]. Environment International, 2010,36(5):424-432.

[12] Cao Z, Chen Q, Zhu C, et al. Halogenated organic pollutant residuals in human bared and clothing-covered skin areas: source differentiation and comprehensive health risk assessment [J]. Environmental Science & Technology, 2019,53(24):14700-14708.

[13] Xu Y, Cohen Hubal E A, Little J C. Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: sensitivity, uncertainty, and implications for biomonitoring [J]. Environmental Health Perspectives, 2010,118(2):253-258.

[14] Weschler C J, Nazaroff W W. Dermal uptake of organic vapors commonly found in indoor air [J]. Environmental Science & Technology, 2014,48(2):1230-1237.

[15] Lao J Y, Xie S Y, Wu C C, et al. Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes [J]. Environmental Science & Technology, 2018,52(15):8330-8338.

[16] Weschler C J, Nazaroff W W. SVOC exposure indoors: fresh look at dermal pathways [J]. Indoor Air, 2012,22(5):356-377.

[17] Salthammer T, Zhang Y, Mo J, et al. Assessing human exposure to organic pollutants in the indoor environment [J]. Angewandte Chemie International Edition, 2018,57(38):12228-12263.

[18] Abdallah M A, Pawar G, Harrad S. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants [J]. Environment International, 2015,84: 64-70.

[19] Rantakokko P, Kumar E, Braber J, et al. Concentrations of brominated and phosphorous flame retardants in Finnish house dust and insights into children's exposure [J]. Chemosphere, 2019,223:99-107.

[20] Liu X T, Yu G, Cao Z G, et al. Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption [J]. Environment International, 2017,98:113-119.

[21] Nazzaro-Porro M, Passi S, Bonifortil, et al. Effects of aging on fatty acids in skin surface lipids [J]. The Journal of investigative dermatology, 1979,73(1):112-117.

[22] 王 喆,刘少卿,陈晓民,等.健康风险评价中中国人皮肤暴露面积的估算 [J]. 安全与环境学报, 2008,(4):152-156.

Wang Z, Liu S Q, Chen X M, et al. Estimates of the exposed dermal surface area of Chinese in view of human health risk assessment [J]. Journal of Safety and Environment, 2008,(4):152-156.

[23] Stapleton H M, Kelly S M, Allen J G, et al. Measurement of polyhrominated diphenyl ethers on hand wipes: Estimating exposure from hand-to-mouth contact [J]. Environmental Science & Technology, 2008,42(9):3329-3334.

[24] Zartarian V G, Xue J P, Ozkaynak H, et al. A probabilistic arsenic exposure assessment for children who contact CCA-treated playsets and decks, part I: Model methodology, variability results, and model evaluation [J]. Risk Analysis, 2006,26(2):515-531.

[25] 刘国华,盛迪晔.基于三维测量的人体表面积计算公式的比较 [J]. 解剖学报, 2019,50(5):627-632.

Liu G H, Sheng D Y. Comparison of human body surface area calculation formulas with three-dimensional anthropometry [J]. Acta Anatomica Sinica, 2019,50(5):627-632.

[26] 最高人民法院,最高人民检察院,公安部,等.人体损伤致残程度分级[M]. 北京:中国法制出版社, 2022:51-53.

Supreme People's Court, Supreme People's Procuratorate, Ministry of Public Security, et al. Grading of human injury and disability [M]. Beijing: China Legal Publishing House, 2022:51-53.

[27] T/CSES 40-2021 多环芳烃环境健康风险评估技术规范 [S].

T/CSES 40-2021 Technical specification for environmental health risk assessment of polycyclic aromatic hydrocarbons [S].

[28] Nisbet I C T, Lagoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992,16(3):290-300.

[29] Hussain M, Rae J, Gilman A, et al. Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons [J]. Archives of Environmental Contamination Toxicology, 1998,35(3):527-531.

[30] Zhang Y, Zheng H, Zhang L, et al. Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: Characteristics, potential sources and cancer risks apportionment [J]. Environmental Pollution, 2019,246:319-327.

[31] 李大雁,齐晓宝,吴 健,等.大型石化企业邻近区域大气沉降中多环芳烃赋存特征及源解析 [J]. 环境科学, 2021,42(1):106-113.

Li D Y, Qi X B, Wu J, et al. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons in atmospheric deposition in areas adjacent to a large petrochemical enterprise [J]. Environmental Science, 2018,42(1):106-113.

[32] Beko G, Morrison G, Weschler C J, et al. Measurements of dermal uptake of nicotine directly from air and clothing [J]. Indoor Air, 2017,27(2):427-433.

[33] Gong M, Weschler C J, Zhang Y. Impact of clothing on dermal exposure to phthalates: observations and insights from sampling both skin and clothing [J]. Environmental Science & Technology, 2016,50(8):4350-4357.

[34] Vaananen V, Hameila M, Kalliokoski P, et al. Dermal exposure to polycyclic aromatic hydrocarbons among road pavers [J]. The Annals of Occupational Hygiene, 2005,49(2):167-178.

[35] Q Z. Biomonitoring workers exposed to polycyclic aromatic hydrocarbons in asphalt during road paving [D]. USA, University of Cincinnati, 1997.

[36] Thepanondh S, Varoonphan J, Sarutichart P, et al. Airborne volatile organic compounds and their potential health impact on the vicinity of petrochemical industrial complex [J]. Water, Air, & Soil Pollution, 2010,214(1-4):83-92.

[37] Hsu C Y, Chiang H C, Shie R H, et al. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk [J]. Environmental Pollution, 2018,240:95-104.

[38] 邹昃灏,赵时真,田乐乐,等.珠江三角洲城市大气中多环芳烃的污染特征、来源解析和健康风险评估 [J]. 地球化学, 2021,50(6):644- 653.

Zou Z H, Zhao S Z, Tian L L, et al. Pollution characteristics, source apportionment, and health risk assessment of priority PAHs in the urban air of the Pearl River Delta [J]. Geochimica, 2021,50(6):644- 653.

[39] 夏 凌.石化区环境空气中多环芳烃的健康风险评估及其对周边居民内暴露的影响 [D]. 广州:暨南大学, 2014.

Xia L. Health riskassessment of atmospheric PAHs and its impact on internal exposurein the residents around a petrochemical area [D]. Guangzhou: Jinan University, 2014.

[40] Sopian N A, Jalaludin J, Abu Bakar S, et al. Exposure to particulate PAHs on potential genotoxicity and cancer risk among school children living near the petrochemical industry [J]. International Journal of Environmental Research and Public Health, 2021,18(5):2575-2595.

[41] Mo Z, Shao M, Lu S, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China [J]. Science of the Total Environment, 2015,533:422-431.

[42] Chen M-J, Lin C-H, Lai C-H, et al. Excess lifetime cancer risk assessment of volatile organic compounds emitted from a petrochemical industrial complex [J]. Aerosol and Air Quality Research, 2016,16(8):1954-1966.

[43] Ramirez N, Cuadras A, Rovira E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site [J]. Environment International, 2012,39(1):200-209.

[44] Shuai J, Kim S, Ryu H, et al. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea [J]. BMC Public Health, 2018,18(1):528.

[45] Du W, Chen Y, Zhu X, et al. Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China [J]. Atmospheric Environment, 2018,191: 1-8.

[46] 张海东,孔祥华.宝鸡市冬季PM2.5中多环芳烃污染及健康风险评价 [J]. 四川环境, 2020,39(3):51-58.

Zhang H D, Kong X H. PAHs Pollution and health risk assessment of PM2.5in Baoji City in winter [J]. Sichuan Environment, 2020,39(3): 51-58.

[47] Lovett C, Shirmohammadi F, Sowlat M H, et al. Commuting in Los Angeles: cancer and non-cancer health risks of roadway, light- rail and subway transit routes [J]. Aerosol and Air Quality Research, 2018,18(9):2363-2374.

A study on employees’ skin exposure to polycyclic aromatic hydrocarbons and health risk in a petrochemical industrial park.

GUO Jian1,2, LUO Xiao-jun1*, GUAN Ke-lan1,2, LV Yin-zhi1,2, ZENG Yan-hong1, MAI Bi-xian1

(1.State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)., 2022,42(11):5427~5435

In the study, skin wipe samples were collected from four typical skin parts (forehead, palm, forearm and shank) of 30 volunteers (15 men and 15 women), who work in a Petrochemical Industrial Park in Maoming City (a typical petrochemical city). The concentrations of 15 polycyclic aromatic hydrocarbons (∑15PAHs) in wiping samples were determined by gas chromatography-mass spectrometry (GC-MS), and the human exposure doses through skin exposure and hand-mouth contact were calculated. The concentration of Σ15PAHs in skin samples ranged from 21 to 1.9×104ng/m2. The PAH concentrations exhibited significant differences among different skin parts (<0.01) with the order of forehead > palm > forearm > shank. PAHs are mainly composed of 3~4rings. Although no statistical difference was observed in ∑15PAHs between female and male, the daily dermal absorption doses of PAH (DADderm) was significantly higher in female [41ng/(kg×d)] than male [28ng/(kg×d)]. The hand-mouth exposure dose [0.34ng/(kg×d)] was negligible to compare with the dermal absorption dose [34ng/(kg×d)]. The bared skins contribute to 88% of dermal absorption dose. There was no obvious non-carcinogenic risk but risks of skin cancer were higher than the acceptable level (1×10-4) for 7% staff, indicating potential skin cancer risk.

polycyclic aromatic hydrocarbons;petrochemical employees;skin exposure;health risk

X511

A

1000-6923(2022)11-5427-09

郭 建(1984-),男,广东茂名人,中国科学院广州地球化学研究所(中国科学院大学)博士研究生,主要研究方向为有机污染物的暴露评估及健康风险评价.发表论文6篇.

2022-04-26

国家自然科学基金资助项目(41877386,41931290);广东省科技项目(2020B1212060053,2019B121205006)

* 责任作者, 研究员, luoxiaoj@gig.ac.cn

猜你喜欢
显著性部位人体
每个女孩都有不允许别人触碰的隐私部位
每个女孩都有不允许别人触碰的隐私部位
人体“修补匠”
人体冷知识(一)
本刊对论文中有关统计学表达的要求
分析当归中不同部位有效化学成分
人体可笑堂
基于显著性权重融合的图像拼接算法
基于视觉显著性的视频差错掩盖算法
奇妙的人体止咳点