北方稻蟹共作系统氨挥发损失的研究

2018-04-19 08:36马旭洲于永清吕为群
浙江农业学报 2018年4期
关键词:养蟹田面河蟹

王 昂,马旭洲,于永清,徐 静,吕为群

(1.上海海洋大学 水产科学国家级实验教学示范中心,上海 201306; 2.上海海洋大学 水产种质资源开发利用重点实验室,上海 201306; 3.上海海洋大学 农业部淡水水产种质资源重点实验室/上海市水产养殖工程技术研究中心/水产动物遗传育种协同创新中心,上海 201306; 4.盘山县河蟹技术研究所,辽宁 盘锦 124000; 5.盘山县气象局,辽宁 盘锦 124000)

水产动物的代谢产物是NH3,通过鳃排放到环境中。Boyd等[17]研究证明在养殖过程中,约有25%~30%的饲料N素被水产动物利用,其余都以NH3的形式排出体外。因此,养鱼池塘也是NH3的排放源之一[18]。水稻与水产动物相结合,是一种因地制宜的种养模式,在我国有2 000多年的历史,并且得到学术界和生产上的广泛认可[19]。然而,Li等[20]研究了稻鱼共作系统NH3挥发,发现鱼类的存在降低了稻田的NH3挥发。因为鱼类抑制了藻类的生长,降低水体的pH,从而抑制了NH3的产生。稻蟹共作模式在我国北方稻作区被广泛应用,取得了很好的生态效益和经济效益[21]。关于养蟹对水稻生长、病虫害防治、稻田生态环境等方面的影响有广泛研究[22],但是该系统的NH3挥发情况,还未见报道。目前稻蟹共作模式在全国有较大应用面积,仅辽宁省就超过8万hm2[23]。因此研究稻蟹共作系统NH3的挥发损失,评估其对环境的影响意义较大。本研究结合室外试验和室内检测,对比稻蟹共作模式和常规稻作模式在施肥和不施肥条件下系统NH3挥发损失,探索其影响因素,补充稻蟹共作模式的理论基础,为该模式的规模化应用提供参考。并且全国各地因地制宜,发展了许多稻田综合种养模式,如稻鱼、稻蟹、稻虾、稻鳖、稻蛙等[23],本研究也为今后稻田综合种养模式的基础研究提供参考。

1 材料与方法

1.1 实验地点

田间实验于2013年的6月—10月,在辽宁省盘锦市坝墙子镇姜家村(122.26 E, 41.17 N)进行。实验点地处温带季风性气候区,2013年年均气温9.2 ℃,降水量613.7 mm,降水主要集中在5月—9月,占全年降水量的72.7%。该实验地点的土壤为潮棕壤,总氮(TN)1.61 g·kg-1,总磷(TP)0.45 g·kg-1,总有机碳(TOC)13.8 g·kg-1,pH为7.28。

1.2 实验材料

水稻为盐粳456(Oryzasalivasubspkeng),生育期163 d左右,由辽宁省农业科学院提供。肥料为尿素(46% N),过磷酸钙(16% P2O5)和硫酸钾(50% K2O)。河蟹为辽河水系中华绒螯蟹(Eriocheirsinensis),由盘山县河蟹技术研究所提供。配合饲料购自禾丰牧业有限公司(辽宁沈阳),成分:粗蛋白≥35%,粗脂肪≥5.5%,粗纤维≥9%,粗灰分≤15%,TP≥1%。

1.3 实验设计

田间实验采用施肥和养蟹二因素裂区设计。主因素为不养蟹与养蟹,不养蟹就是常规稻作模式,养蟹就是将大眼幼体放入稻田培育成一龄蟹种。副因素为施肥与不施肥,实验共4个处理,即单作稻不施肥(R0M)、稻蟹共作不施肥(R0C)、单作稻施肥(R1M)和稻蟹共作施肥(R1C),每个处理各3个重复,一共12个小区,每个小区面积为100 m2(10 m×10 m)。

1.4 田间设施与管理

每个小区有各自的进水口和排水口。进水口用尼龙网(80目)包裹,以防杂鱼进入和河蟹逃逸。小区之间用田埂(宽1.0 m×高0.5 m)隔开,在田埂上用厚塑料膜做成高40 cm的防逃墙,田埂内沿四周用镀锌铁皮(宽45.0 cm,厚约0.5 mm)垂直插入土壤30 cm,以减少各小区之间的侧渗。5月27日,肥料一次性施入稻田(其中N肥只施于R1M和R1C处理中),施肥量为160 kg·hm-2N,70 kg·hm-2P2O5和80 kg·hm-2K2O。施肥后,所有小区人工翻地15~20 cm。5月30日灌水泡田;6月1日,人工插秧,密度为行距30 cm×株距16 cm,之后田间无任何植保措施。6月9日,大眼幼体(0.005 g)放入养蟹单元格,密度为120万只·hm-2。每天17:00左右,投喂一次配合饲料,天气不好或者饵料有剩余的情况下不投喂。为了降低一龄蟹种提早成熟的比例,根据经验在8月25日至9月15日停止投喂,于9月16日恢复投喂至9月23日。10月1日,水稻人工收割。河蟹于10月20日收获,累积投饵量为920 kg·hm-2。

1.5 采样与测定

1.5.1NH3的采样与测定

1.5.2其他样品的采集与测定

实验期间,田面水一共采集了20次。稻田灌水的10 d内,每天采集水样。用50 mL的注射器,选择5个点,不搅动土壤抽取田面水,注入500 mL的采样瓶中,立刻送至实验室分析。水稻植株采集了5次,于苗期取秧苗20株;于分蘖期、穗分化期、灌浆期和成熟期,在各小区用铁铲随机取水稻5株。将水稻根部泥土洗净,整株放入105 ℃烘箱(DHG-9070A,精宏,上海)中杀青30 min,后将温度调整为70 ℃烘干48 h,冷却后称取质量。

1.6 数据分析

2 结果与分析

2.1 不同处理水稻的N素积累

随着水稻的生长,N素积累量不断增加,至成熟期达到最高值,4个处理水稻N素积累量为77.78~149.10 kg·hm-2(图1)。穗分化期时,水稻的N素积累量为51.65~97.44 kg·hm-2;苗期至分蘖期最低,为3.31~8.47 kg·hm-2。除了苗期以外,施肥稻田的N素积累量均显著高于不施肥稻田(P<0.05)。成熟期的水稻N素积累量,R1M较R0M提高了53.3%;R1C较R0C提高了69.7%(P<0.05)。除苗期外,养蟹也显著增加水稻的N素积累量(P<0.05),主要发生在施肥稻田(R1M和R1C),不施肥稻田中,R0C的N素积累量只在穗分化期显著高于R0M(P<0.05)。在成熟期,R1C的水稻N素积累量较R1M增加了25.0%(P<0.05)。

S、T、PI、F和M分别代表水稻苗期、分蘖期、穗分化期、扬花期和成熟期。不同的字母表示差异显著。S, T, PI, F and M reoresented seedling, tillering, panicle initiation, flowering and mature stages of rice, respectively. Different letters indicated significant differences at 0.05 level.图1 水稻植株不同时期N素积累量Fig.1 N accumulation in rice plants under different treatments

2.2 不同处理NH3挥发情况

NH3挥发速率受施肥的影响较大,所以施肥稻田和不施肥稻田的NH3挥发速率呈现不同趋势(图2)。在施肥稻田中,施肥后检测到少量NH3挥发,5月30日淹水后迅速升高,于6月1日达到峰值,然后迅速下降至较低水平。不施肥稻田(R0M和R0C),NH3挥发处于较低水平,并且趋势较平稳。R0M、R0C、R1M和R1C的NH3平均挥发速率分别为0.148、0.132、1.506和1.462 kg·hm-2·d-1,其中养蟹稻田(R0C和R1C)的挥发速率略低,但是差异不显著(P>0.05)。

在水稻全生育期,各处理NH3总挥发量为4.79~49.70 kg·hm-2(表1)。施肥显著增加稻田NH3挥发量,R1M和R1C的NH3挥发量分别较R0M和R0C提高了4.33倍和4.61倍。施肥稻田,NH3挥发主要集中在淹水后10 d内(5月30日—6月8日),R1M和R1C在该阶段的挥发量分别占总挥发量的69.1%和74.2%。从河蟹放入稻田后(6月9日—9月30日)计,R1C的NH3挥发量较R1M降低28.4%(P<0.05)。但是对比全生育期二者的NH3总挥发量,差异不显著(P>0.05)。可见养蟹可以降低稻田的NH3挥发损失,但是效果有限。R1M和R1C处理NH3总挥发量分别占当季施N量(160 kg·hm-2)的28.5%和26.0%。

字母F、I、C和箭头组合表示施肥,灌溉和放蟹时间。Arrow bars combined with letters F, I and C denoted the time of fertilization, irrigation and crab released.图2 不同处理稻田NH3挥发速率Fig.2 Ammonia volatization fluxes from rice fields under different treatments

表1不同模式NH3累积挥发量

Table1Ammonia volatization losses from paddy fields under different treatments

kg·hm-2

同一列的数据后面不同小写字母表示差异显著(P<0.05)。由于9月11日检测到的NH3排放速率极小(小于0.05 kg·hm-2·d-1),所以9月11日—9月30日的NH3排放速率以9月11日的排放速率计。

In a column, different letters mean significant differences among treatments at the 5% level, by ANOVA and DMRT. As the rate of AV was extremely low on 11th September (less than 0.05 kg·hm-2d-1), so the rate of AV between 11th September to 30th September was calculated as the rate on 11th September.

2.3 田面水pH和浓度

在水稻全生育期,田面水pH为6.17~8.85,R0M、R0C、R1M和R1C田面水的pH值分别为7.31、7.22、7.69和7.53(图3),施肥提高了田面水pH,主要发生在淹水后的10 d内(5月30日—6月8日),但是总体差异不显著(P>0.05)。不施肥和施肥稻田pH变化趋势略有差异。不施肥稻田呈现前期高,然后缓慢降低的趋势,但是总体较平稳。施肥稻田,在淹水后pH迅速升高,于淹水后第4天达到峰值,然后下降至平稳。养蟹降低了田面水pH,但是差异也不显著(P>0.05)。

图3 不同处理稻田田面水pH动态变化Fig.3 Dynamics of flooding water pH under different treatments

2.4 NH3挥发速率与田面水浓度的相关性

图4 不同处理稻田田面水动态变化Fig.4 Dynamics of flooding water concentrations under different treatments

** 表示在0.01水平上显著相关。** denoted significant correlation at 0.01 level.图5 NH3 挥发速率与稻田田面水pH(a)和浓度(b)的相关性Fig.5 Dependence of ammonia volatization fluxes on pH values (a) and concentrations of (b) of flooding water in paddy fields

2.5 NH3挥发量与水稻N素积累量的相关性

NH3挥发量(y,kg·hm-2)与水稻不同阶段的N素积累量(x, kg·hm-2)呈显著负相关(P<0.05),相关方程为y2=14.938-0.158·x,R2=0.165*(图6)。由此可见,水稻的吸收与NH3的转化竞争系统的N素,从而减少NH3的产生和挥发。

* 表示在0.05水平上显著相关。* denoted significant correlation at 0.05 level.图6 NH3的挥发损失与水稻N素积累量的相关性Fig.6 Relationship between cumulative ammonia volatization losses and N accumulation in rice plants

3 讨论

3.1 水稻的N素积累

水稻植株的N素含量及其分蘖能力与水稻群体的光合能力密切相关,对水稻的分蘖数、干物质量积累和产量有重要影响[28]。许多学者[11,29]研究表明,施肥显著促进了水稻的N素积累,本研究也证实了上述的结论,并且水稻N素积累量于苗期至分蘖期最低,占全生育期N素积累量的4.2%~6.1%;分蘖期至穗分化期最高,占全生育期N素积累量的65.3%~69.8%。因为无论水稻是直播还是移栽,在苗期对N素的需求量都小,并且根系也较弱,吸收能力差;随着水稻的生长,N素需求量不断增加,根系生物量不断增加,对N素吸收能力增强[30]。但是,水稻生物量和N素积累速率并非呈线性正相关,随着水稻的生物量不断增大,N素积累速率下降[31]。养蟹也提高了水稻的N素积累量(穗分化期至成熟期)。有如下原因:首先,河蟹养殖在稻田里,粪便给水稻提供了额外的N素[32]。此外,孙永健等[33]研究表明,随着施N量的提高,水稻对N素的吸收先增加后降低,存在N肥和P肥的协同吸收。因此,其河蟹粪便中的P可能促进了水稻对N素的吸收。其次,河蟹在稻田中的扰动,促进了水稻根系对N素的吸收[34]。然而,河蟹对水稻N素积累的显著促进作用仅仅发生在施肥稻田,可能因为在施肥条件下,水稻根系生物量较大[35],对N素的吸收能力强,所以更加能够体现河蟹的促进作用。

3.2 不同处理的NH3挥发损失

综上,稻蟹共作模式显著提高了水稻的N素积累量,并在一定程度上降低了稻田NH3挥发损失,提高了肥料N素的利用率,降低对环境的危害,为该模式的规模化应用提供了积极的理论支持。然而,稻田系统N素损失有多种途径,除了NH3挥发以外,还有淋溶、径流和反硝化损失[50-51],因此要全面评估稻蟹共作模式对生态环境的影响还有待补充研究。另外,本研究为了方便阐述河蟹对于系统NH3挥发损失的影响,采用了单一的施肥方式。今后,对于其他施肥策略,比如施有机肥或者有机无机配施对稻蟹共作生态系统NH3挥发损失的影响需要进一步探索。

参考文献(References):

[1]PINDER R W, ADAMS P J,PANDIS S N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the eastern united states[J].EnvironmentalScience&Technology, 2007, 41 (2): 380-385.

[2]VITOUSEK P M, ABER J D, HOWARTH R W, et al. Technical report: Human alteration of the global nitrogen cycle: Sources and consequences[J].EcologicalApplications, 1997, 7 (3): 737-750.

[3]LIU S, WANG J J, ZHOU T, et al. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies[J].JournalofEnvironmentalSciences, 2017, 57 (7): 196-210.

[4]HUANG X, SONG Y, LI M, et al. A high-resolution ammonia emission inventory in China[J].GlobalBiogeochemicalCycles, 2012, 26 (1): DOI:10.1029/2011GB004161.

[5]彭世彰,杨士红,徐俊增. 节水灌溉稻田氨挥发损失及影响因素[J]. 农业工程学报, 2009, 25 (8): 35-39.

PENG S Z, YANG S H, XU J Z. Ammonia volatilization and its influence factors of paddy field under water-saving irrigation[J].TransactionsoftheCSAE, 2009, 25(8): 35-39. (in Chinese with English abstract)

[6]SHANG Q, GAO C, YANG X, et al. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments[J].BiologyandFertilityofSoils, 2014, 50: 715-725.

[7]SCHLESINGER W H,HARTLEY A E. A global budget for atmospheric NH3[J].Biogeochemistry, 1992, 15 (3): 191-211.

[8]宋勇生,范晓晖,林德喜,等. 太湖地区稻田氨挥发及影响因素的研究[J]. 土壤学报, 2004, 41 (2): 265-269.

SONG Y S, FAN X H, LIN D X, et al. Ammonia volatilation from paddy fields in the Taihu lake region and its influencing factors[J].ActaPedologicaSinica, 2004, 41(2): 265-269. (in Chinese with English abstract)

[9]彭显龙,王海含,刘小纶,等. 稻田施尿素后短期内氮素分布和氨挥发损失研究[J]. 东北农业大学学报, 2015, 46 (12): 24-32.

PENG X L, WANG H H, LIU X L, et al. Study on distribution of N and ammonia volatilization of urea within short time after fertilization in paddy soil[J].JournalofNortheastAgriculturalUniversity, 2015, 46(12): 24-32. (in Chinese with English abstract)

[10]LI H, LIANG X Q, LIAN Y F, et al. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields[J].SoilScienceSocietyofAmericaJournal, 2009, 73 (6): 1890-1895.

[11]LI Y, HUANG L, ZHANG H, et al. Assessment of ammonia volatilization losses and nitrogen utilization during the rice growing season in alkaline salt-affected soils[J].Sustainability, 2017, 9 (1): 132-146.

[12]CAO Y,YIN B. Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate[J].AgricultureEcosystems&Environment, 2015, 202: 1-7.

[13]SANZ-COBENA A, MISSELBROOK T H, ARCE A, et al. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions[J].Agriculture,Ecosystems&Environment, 2008, 126 (3-4): 243-249.

[14]SHANG Q, YANG X, GAO C, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments[J].GlobalChangeBiology, 2011, 17 (6): 2196-2210.

[15]LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J].FieldCropsResearch, 2015, 184: 80-90.

[16]ZHOU S, HOU H,HOSOMI M. Nitrogen removal, N2O Emission, and NH3volatilization under different water levels in a vertical flow treatment system[J].Water,Air,andSoilPollution, 2008, 191: 171-182.

[17]BOYD C E,TUCKER C S. Sustainability of channel catfish farming[J].WorldAquaculture, 1995, 26 (3): 45-53.

[18]BOULDIN D R, JOHNSON R L, BURDA C, et al. Losses of inorganic nitrogen from aquatic systems[J].JournalofEnvironmentalQuality, 1974, 3 (2): 107-114.

[19]LI K. Rice-fish culture in China: A review[J].Aquaculture, 1988, 71: 173-186.

[20]LI C F, CAO C G, WANG J P, et al. Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J].PlantandSoil, 2008, 307 (1/2): 207-217.

[21]LI X D, DONG S L, LEI Y Z, et al. The effect of stocking density of Chinese mitten crabEriocheirsinensison rice and crab seed yields in rice-crab culture systems[J].Aquaculture, 2007, 273 (4): 487-493.

[22]安辉,刘鸣达,王厚鑫,等. 不同稻蟹生产模式对稻蟹产量和稻米品质的影响[J]. 核农学报, 2012, 26 (3): 581-586.

AN H, LIU M D, WANG H X, et al. Effects of different rice-crab production models on rice-crab yield and quality[J].JournalofNuclearAgriculturalSciences, 2012, 26(3): 581-586. (in Chinese with English abstract)

[23]隆斌庆,陈灿,黄璜,等. 稻田生态种养的发展现状与前景分析[J]. 作物研究, 2017, 31(6): 607-612.

LONG B Q, CHEN C, HUANG H, et al. Status and prospect of ecological planting and farming models in paddy fields[J].CropResearch, 2017, 31(6): 607-612. (in Chinese)

[24]XU J Z, PENG S Z, YANG S H, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements[J].AgriculturalWaterManagement, 2012, 104 (2): 184-192.

[25]马玉华,刘兵,张枝盛,等. 免耕稻田氮肥运筹对土壤NH3挥发及氮肥利用率的影响[J]. 生态学报, 2013, 33 (18): 5556-5564.

MA Y H, LIU B, ZHANG Z S, et al. Effects of nitrogen management on NH3volatilization and nitrogen use efficiency under no-tillage paddy fields[J].ActaEcologicaSinica, 2013, 33(18): 5556-5564. (in Chinese with English abstract)

[26]国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社, 2002: 279-281.

[27]鲍士旦. 土壤农化分析[M]. 3版.北京: 中国农业出版社, 2000: 264-268.

[28]MAKINO A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat[J].PlantPhysiology, 2011, 155 (1): 125-129.

[29]ZHU X C, WANG X F, LI Z J, et al. Effects of dense planting with less basal N fertilization on rice yield, N use efficiency and greenhouse gas emissions[J].InternationalJournalofAgriculture&Biology, 2015, 17(6): 1091-1100.

[30]潘圣刚,黄胜奇,曹凑贵,等. 氮肥运筹对稻田田面水氮素动态变化及氮素吸收利用效率影响[J]. 农业环境科学学报, 2010, 29 (5): 1000-1005.

PAN S G, HUANG S Q, CAO C G, et al. Effects of nitrogen management on dynamics of nitrogen in surface water from rice field and nitrogen use efficiency[J].JournalofAgro-EnvironmentScience, 2010, 29(5): 1000-1005. (in Chinese with English abstract)

[31]李洪顺. 氮素运筹对超级杂交水稻氮吸收利用与产量的影响[D].长沙:中南大学, 2010: 35-36.

LI H S. Effect of nitrogen management on absorption and utilization of nitrogen and yield of super hybird rice[D]. Changsha: Central South University, 2010: 35-36. (in Chinese with English abstract)

[32]ZENG Q, GU X, CHEN X, et al. The impact of Chinese mitten crab culture on water quality, sediment and the pelagic and macrobenthic community in the reclamation area of Guchenghu Lake[J].FisheriesScience, 2013, 79 (4): 689-697.

[33]孙永健,孙园园,蒋明金,等. 施肥水平对不同氮效率水稻氮素利用特征及产量的影响[J]. 中国农业科学, 2016, 49 (24): 4745-4756.

SUN Y J, SUN Y Y, JIANG M J, et al. Effects of fertilizer levels on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J].ScientiaAcriculturaSinica,2016,49(24): 4745-4756. (in Chinese with English abstract)

[34]陈飞星,张增杰. 稻田养蟹模式的生态经济分析[J]. 应用生态学报, 2002, 13 (3): 323-326.

CHEN F X, ZHANG Z J. Ecological economic analysis of rice-crab model[J].ChineseJournalofAppliedEcology, 2002, 13(3): 323-326. (in Chinese with English abstract)

[35]李洪亮,孙玉友,曲金玲,等. 施氮量对东北粳稻根系形态生理特征的影响[J]. 中国水稻科学, 2012, 26 (6): 723-730.

LI H L, SUN Y Y, QU J L, et al. Influence of nitrogen levels on morphological and physiological characteristics of root system in japonica rice in northeast China[J].ChineseJournalofRiceScience, 2012, 26(6): 723-730. (in Chinese with English abstract)

[36]BAUTISTA E U, KOIKE M,SUMINISTRADO D C. Mechanical deep placement of nitrogen in wetland rice[J].JournalofAgriculturalEngineeringResearch, 2001, 78 (4): 333-346.

[37]SOMMER S G, SCHJOERRING J K,DENMEAD O T. Ammonia emission from mineral fertilizers and fertilized crops[J].AdvancesinAgronomy, 2004, 82 (3): 557-622.

[38]LI C, CAO C, WANG J, et al. Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J].PlantandSoil, 2008, 307 (1-2): 207-217.

[39]LI P, LU J, HOU W, et al. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea[J].EnvironmentalScience&PollutionResearch, 2017, 24 (12): 1-12.

[40]钱龙,赵依民,王晓毅. 氨对河蟹幼体的急性毒性试验[J]. 淡水渔业, 1987 (2): 28-29.

QIAN L, ZHAO Y M, WANG X Y. Acute toxicity test of ammonia to larvae crab[J].FreshwaterFisheries, 1987 (2): 28-29. (in Chinese)

[41]LIAO L, SHAO X, JI R, et al. Ammonia volatilization from direct seeded later-rice fields as affected by irrigation and nitrogen managements[J].InternationalJournalofAgricultureandBiology, 2015, 17(3): 582-588.

[42]HAYASHI K, NISHIMURA S,YAGI K. Ammonia volatilization from a paddy field following applications of urea: rice plants are both an absorber and an emitter for atmospheric ammonia[J].ScienceoftheTotalEnvironment, 2008, 390(2/3): 485-494.

[43]ZHANG Q, LV D, MA X, et al. The effects of different transplanting ways on the phytoplankton community in rice-crab culture system[J].JournalofFoodAgriculture&Environment, 2014, 12 (1): 199-204.

[44]陈振华,陈利军,武志杰,等. 辽河下游平原不同水分条件下稻田氨挥发[J]. 应用生态学报, 2007, 18 (12): 2771-2776.

CHEN Z H, CHEN L J, WU Z J, et al. Ammonia volatilization from rice field under different water conditions in lower Liaohe River Plain[J].ChineseJournalofAppliedEcology, 2007, 18(12): 2771-2776. (in Chinese with English abstract)

[45]郝晓晖,肖宏宇,苏以荣,等. 长期不同施肥稻田土壤的氮素形态及矿化作用特征[J]. 浙江大学学报(农业与生命科学版), 2007, 33 (5): 544-550.

HAO X H, XIAO H Y, SU Y R, et al. Characteristics of nitrogen forms and mineralization in paddy soils of long-term fertilization experiment[J].JournalofZhejiangUniversity(Agriculture&LifeSciences), 2007, 33(5): 544-550. (in Chinese with English abstract)

[46]孙文通,张庆阳,马旭洲,等. 不同河蟹放养密度对养蟹稻田水环境及水稻产量影响的研究[J]. 上海海洋大学学报, 2014, 23 (3): 366-373.

SUN W T, ZHANG Q Y, MA X Z, et al. A study on effects of different crab stocking density on water environment and rice yield[J].JournalofShanghaiOceanUniversity, 2014, 23(3): 366-373. (in Chinese with English abstract)

[47]张启明,铁文霞,尹斌,等. 藻类在稻田生态系统中的作用及其对氨挥发损失的影响[J]. 土壤, 2006, 38 (6): 814-819.

ZHANG Q M, TIE W X, YIN B, et al. Algae function in paddy field ecosystem and its effect on reducing ammonia volatilization from paddy fields[J].Soils, 2006, 38(6): 814-819. (in Chinese with English abstract)

[48]汪清,王武,马旭洲,等. 稻蟹共作对土壤理化性质的影响[J]. 湖北农业科学, 2011, 50 (19): 3948-3952.

WANG Q, WANG W, MA X Z, et al. The effects of integrated rice-crab production on soil physical and chemical properties[J].HubeiAgricultureSciences, 2011, 50(19): 3948-3952. (in Chinese with English abstract)

[49]徐敏,马旭洲,王武. 稻蟹共生系统水稻栽培模式对水稻和河蟹的影响[J]. 中国农业科学, 2014, 47 (9): 1828-1835.

XU M, MA X Z, WANG W. Effects of different cultivation patterns on rice yield and crab in rice-crab culture system[J].ScientiaAgriculturaSinica, 2014, 47(9): 1828-1835. (in Chinese with English abstract)

[50]LIANG K, ZHONG X, HUANG N, et al. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system[J].ScienceoftheTotalEnvironment, 2017, 609: 46-57.

[51]ZHANG M, YAO Y, ZHAO M, et al. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field[J].AgricultureEcosystems&Environment, 2017, 247: 236-245.

猜你喜欢
养蟹田面河蟹
养蟹三部曲
河蟹池塘高效混养新模式探析
稻田田面水氮素浓度变化特征及快速检测方法研究
——以长江中游单季稻田为例
北方地区湖泊河蟹养殖技术探讨
陈鸿波
增效剂对稻田田面水氮素转化及水稻产量的影响
春耕稻田滞水减排控制面源污染效果研究
智能精准投饵 河蟹吃饱吃好
稻田养蟹技术要点
掺混控释肥侧深施对稻田田面水氮素浓度的影响