二维Ruddlesden-Popper相钙钛矿太阳能电池研究进展

2020-12-14 03:58陈聪商雪妮朱立华张炜孟凡斌郑士建
河北工业大学学报 2020年5期
关键词:钙钛矿阳离子无机

陈聪 商雪妮 朱立华 张炜 孟凡斌 郑士建

摘要 目前,影响钙钛矿太阳能电池发展的主要因素是弱稳定性和低光电转换效率。Ruddlesden-Popper(RP)相二维(2D)钙钛矿材料具有结晶度高、吸收光谱宽和稳定性良好等特性,已经成为光伏领域研究的热点。RP相2D钙钛矿中有机分子层间通过范德瓦尔斯力可以形成稳定的2D结构,进而克服稳定性问题。截至目前,研究者已经获得了超过18%的光电转换效率。文中对RP相钙钛矿的结构特点进行阐述,对RP相钙钛矿薄膜的典型制备方法进行归纳,总结了不同A′位有机阳离子在提高RP相钙钛矿太阳能电池的效率和稳定性方面的应用现状,最后对RP相钙钛矿在PSCs中未来可探究方面进行展望。本研究能够为深入理解和提升PSCs性能提供理论支持和实验依据。

关 键 词 太阳能电池;钙钛矿;二维;稳定性;Ruddlesden-Popper

中图分类号 TM914.4     文献标志码 A

Abstract At present, the main factors affecting the development of perovskite solar cells (PSCs) are weak stability and low photoelectric conversion efficiency. The Ruddlesden-Popper (RP) phase two-dimensional (2D) perovskite materials  are featured with high crystallinity, wide absorption spectrum and good stability, and have become the focus in the field of photovoltaic. The van der Waals force can form a stable 2D structure between organic molecular layers in the RP phase 2D perovskite, thereby overcoming the stability problem. So far, researchers have achieved the power conversion efficiency (PCE) exceeding 18%. The article describes the structural properties of RP phase perovskite, which summarizes the typical preparation methods for RP phase perovskite film, concluding the application status of different A 'position organic cations in improving the efficiency and stability of RP phase PSCs. Finally, the prospective aspects are explored for RP phase perovskite in PSCs. The research can provide theoretical and experimental support for much better understanding and improving the performance of PSCs.

Key words solar cells; perovskites; two-dimensional; stability; Ruddlesden-Popper

0 引言

以光伏效应为原理的太阳能电池是解决能源危机最有研究价值的学科之一。目前,硅基太阳能电池在光伏领域依然占有主导地位,但是由于制备成本高、工艺复杂等因素,限制了其大规模商业化生产及在各领域应用。因此,寻找成本低廉、工艺简单、便于生产的光吸收材料成为太阳能电池可持续发展的关键因素。2009年,Kojima等[1]将钙钛矿材料CH3NH3PbI3和CH3NH3PbBr3作为敏化剂应用到液态染料敏化太阳能电池中,测得的器件光电转换效率(Power Conversion Efficiency,PCE)为3.8%,自此钙钛矿材料在电池领域不断发展。随着研究推进,目前钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)的PCE达到25.2%[2],接近2017年硅基太阳能电池26.3%的PCE,显示了其在太阳能电池方面的良好性能。

在过去的几年中,PSCs领域更加注重提高电池的长期稳定性,大量研究致力于优化钙钛矿吸收层,例如,成分组成[3-4]、納米结构[5-6]、容忍因子[7-8]、钝化缺陷[9-10]、接触层[11-13]、界面修饰[14]和器件封装[15-16]。在提高PSCs性能中光吸收层的选取及结构、种类等对太阳能电池的PCE和稳定性起决定作用。三维(3D)钙钛矿材料是近几年在太阳能电池研究中常见的光活性材料,但是由于其激子束缚能低、稳定性差,严重限制了其应用[17]。与3D钙钛矿材料相比,2D钙钛矿薄膜中大体积的封端分子可以有效阻挡外部水氧破坏和材料内部离子迁移[18],具有良好的稳定性,以及吸收层薄膜质量高[19],目前已经获得的PCE超过18%[20]。因为2D Ruddlesden-Popper(RP)相钙钛矿表面有机分子具有耐湿疏水性和结构中的范德瓦耳斯力,所以2D RP相钙钛矿比3D钙钛矿具有更高的结构稳定性,在改善钙钛矿太阳能电池稳定性方面2D或准2D钙钛矿也拥有巨大潜力[21-22],更适合大规模工业应用。2D钙钛矿可应用于光发射、自旋电子学和光电探测器、场效应晶体管(FET)[23]和发光二极管(LED)器件[24-25]等(如图1所示)。

RP相是2D钙钛矿的主要类别,RP相2D钙钛矿是有机分子层间通过范德瓦耳斯力形成稳定的2D结构,同时有机阳离子组成双层使每单位晶胞具有偏移的无机层。本文简要讨论2D RP相PSCs的PCE和稳定性,为更好地理解2D RP相PSCs性能提供理论支持和实验依据。

1 二维Ruddlesden-Popper相钙钛矿结构

早在20世纪90年代,Ishihara等[24]和Mitzi等[27]就提出并研究了2D钙钛矿。2D卤化物钙是由3D钙钛矿材料演变而来的,RP相钙钛矿是3D钙钛矿沿晶体方向<100>剪切得到的(如图2所示)。

取向为<100>的2D有机-无机杂化RP相钙钛矿的通式为A′2Aq-1MqX3q+1(q>1)[27],其中A′为伯脂族或芳族烷基铵阳离子,A为短链有机、无机阳离子,B为二价金属,X为卤化物阴离子,n是[MX4]2-钙钛矿层在两个有机绝缘层中的数目。2D结构中[MX4]2-八面体无机层组成2D次级结构单元,该无机层限制在插入的大體积烷基铵阳离子双层之间[29],有机间隔基的疏水性可以抑制水分子渗透对无机层的侵蚀,以保持结构的稳定性,该结构代表了最常研究的2D卤化物钙钛矿。

2 二维Ruddlesden-Popper相钙钛矿薄膜制备方法

通常认为潮湿的环境是加速RP相钙钛矿降解的关键因素[30],最终导致太阳能电池性能降低。此外,钙钛矿薄膜质量也是影响太阳能电池性能的重要因素。若薄膜存在缺陷会影响吸光度、光电流及与其接触的电子传输层和空穴传输层作用,最终降低PSCs的性能。

目前制备表面均匀和性能良好的钙钛矿薄膜,主要有以下3种制备方法:

1)一步旋涂法(如图3a)所示)。通过将有机和无机卤化物按照一定的化学计量比添加到高沸点极性溶剂中,例如二甲基甲酰胺(DMF)、乙腈、γ-丁内酯、氯苯和二甲基亚砜(DMSO)等;采用一步旋涂方法均匀涂在电子传输层PEDOT∶PSS上,退火去除残留溶剂,即可获得均匀2D钙钛矿薄膜。

2)真空极化处理法(如图3b)所示)。通过在DMF∶DMSO混合溶剂中加入一定摩尔比的有机和无机卤化物的混合物制备准2D钙钛矿的前驱体溶液。通过在反应中引入原位添加剂MACl(MA为甲基胺阳离子)等,以实现更好的结晶和改善膜质量[19-31]。将前驱体溶液旋涂在预热的基板上然后在真空室中极化并退火,即可得到2D钙钛矿薄膜,真空极化处理法是在一步旋涂法的基础上进行优化的方法。

3)液相沉积法(如图3c)所示)。2D钙钛矿薄膜形成过程主要包括4个步骤:a)将前驱体溶液沉积到预热的玻璃基板中央;b)溶液各向同性地扩散在基底上;c)溶剂从前驱溶液盘中蒸发;d)溶剂蒸发并形成钙钛矿结晶后,形成黑褐色薄膜片。

3 Ruddlesden-Popper相钙钛矿在太阳能电池中应用

3.1 A′位正丁铵阳离子(BA+)

RP相钙钛矿是2D钙钛矿的主要类别,最常见的A′位正一价有机间隔基是铵阳离子(RNH3+),有机疏水阳离子在两端中间层为小分子和每单位晶胞具有偏移的无机层,有机分子层间通过范德瓦尔斯力形成稳定的2D结构。在3D钙钛矿中使用离子半径较小的MA+和较大BA+使其钙钛矿层中形成空间效应转变为2D钙钛矿。Cao等[30]采用旋涂法合成(BA)2(MA)n-1PbnI3n+1 (n = 1,2,3,4)薄膜,获得了不同n值的能带值;当n = 3时2D PSCs获得最高PCE为4.02%。可能是由于有机阳离子抑制平面外电荷传输导致较低的PCE,可通过合成接近单晶质量的薄膜来克服这个问题。随后,Tsai等[18]利用热旋涂制备接近单晶的2D钙钛矿化合物 (BA)2(MA)3Pb4I13,测得器件PCE为12.51%,在200 h后保留了其初使PCE的80%,而在2 050 h后缓慢降解为初始性能约70%。

为进一步提高PSCs的PCE和稳定性,Zhang等[33]添加硫氰酸铵添加剂使用一步旋涂制备垂直取向的高结晶2D层状 (BA)2(MA)n-1PbnI3n+1(n = 3,4)薄膜;(BA)2(MA)2Pb3I10器件的平均PCE为6.82%,(BA)2(MA)3Pb4I13器件的PCE达到了8.79%;暴露于55% ± 5%潮湿环境40 d后的XRD几乎无变化,表明薄膜具有良好的耐湿度稳定性。Zuo等[32]改进钙钛矿薄膜制备方法,采用无旋涂、可直接扩展的滴涂法沉积前驱体溶液,合成高度定向、均匀的2D钙钛矿薄膜,器件产生的PCE可达14.9%;当储存在氮气手套箱中时,该电池的PCE稳定时间超过5个月。Wu等[34]提出了一种缓慢的后退火工艺合成(BA)2(MA)3Pb4I13薄膜,将2D PSCs的PCE提高到17.26%,在N2环境下(无封装)2 000 h后器件降解小于4.5%,表现良好的稳定性,合成工艺过程为将2D PSCs推向实际应用提供了一种可行性方法。

Zhou等[35]使用一步旋涂法在A位掺杂适当的FA+(FA+为甲脒阳离子)通过控制钙钛矿的结晶动力学,获得有限非取向的高质量三元阳离子卤化物钙钛矿(BA)2(MA,FA)3Pb4I13薄膜,A位离子的取代开始不断被研究。Liu等[36]用Cs+取代了层内A位部分MA+,得到(BA)2(MA0.95Cs0.05)3Pb4I13组成器件的PCE高达13.68%;在黑暗环境80 ℃恒温条件,在约20 h内器件仍维持初始PCE的85%。与此同时,Cs+掺杂有助于在缺陷态密度、电荷载流子迁移率和电荷转移动力学方面改善光电性能。为进一步提高钙钛矿太阳能电池的PCE,Gao等[37]使用MA+、FA+和Cs+混合阳离子合成(BA)2(Cs0.02MA0.64FA0.34)4Pb5I16薄膜,这种三阳离子2D钙钛矿太阳能电池具有更长的载流子寿命和更高的电导率,PCE提高到14.23%。Jiang等[38]将3种阳离子作为A位的阳离子,经过热旋涂形成(BA)2(MA0.76FA0.19Cs0.05)3Pb4I13薄膜,其器件的平均PCE为13.72%,最高PCE达到15.58%;在黑暗中恒温85 ℃处理1 400 h以上,器件仍保持初始PCE的80%,得到了高效且稳定的钙钛矿太阳能电池。

2019年,Lian等[39]将苯乙胺陽离子(PEA+)和胍盐阳离子(GA+)的盐分别溶解在DMF溶剂中,通过旋涂法分别得到2D (PEA-BA)2MA4Pb5I16和(GA-BA)2MA4Pb5I16薄膜;由于PEA+不对称结构倾向于在钙钛矿薄膜的上层过度富集,导致在膜的顶部形成小晶粒,从而得到结晶性良好的钙钛矿晶体,基于(PEA-BA)2MA4Pb5I16器件的平均PCE为13.30%,最大PCE为13.83%;(GA-BA)2MA4Pb5I16中的定向晶粒构成最优化薄膜,可改善载流子的传输特性,器件的平均PCE为14.50%,最大PCE为13.95%;在空气中55% ± 5%的湿度存储800 h后,未封装的器件保留了其初始PCE的90%。PEA+浓度较高时在薄膜表面富集而形成小晶粒,使薄膜的晶体质量下降,不利于电荷输运,以至于短路电流和光伏性能下降;而GA+在钙钛矿薄膜上分布相对均匀,在膜顶部有轻微集中,因此具有较高的PCE。

由于铅元素有毒而且对环境污染严重,因此研究人员开始寻找无毒、无污染的替代元素,与铅同主族的锡元素最先受到关注。Cao等[40]使用一步旋涂方法采用三乙基膦作为有效的抗氧化剂生出长高纯度的单相2D (BA)2(MA)n-1SnnI3n+1薄膜,所测器件PCE为2.5%。随后,Chen等[41]研究了Pb-Sn合金2D RP钙钛矿(BA)2(MA)3Pb4-xSnxI13性能,锡改善结晶度和晶体取向的同时,在缩小2D Pb-Sn钙钛矿带隙的过程中起着重要作用;光物理研究表明,基于最佳锡比的钙钛矿具有最小的缺陷态密度和弱的量子限域效应,实现了电荷有效分离。测得器件最佳PCE为6%,封装的器件在保存1个月后仍保持其PCE的93.2%。虽然无铅钙钛矿无毒、无污染,但是无铅和铅少的钙钛矿PCE明显低于全铅的材料,铅对PSCs的PCE仍起重要作用。对以上含有BA+的2D RP相PSCs的较高的PCE进行总结,如图4所示。

3.2 A′位PEA+

为获得更高质量的钙钛矿薄膜,Smith等[42]在无退火环境通过一步旋涂获得高质量 (PEA)2(MA)2Pb3I10薄膜(结构图如图5a)所示),测得器件PCE达到4.73%,将器件在52%的相对湿度下暴露长达46 d,经XRD测试后没有其他杂相衍射峰,并且吸收光谱没有显著变化。为提高RP相PSCs的PCE,Zhang等[43]借助于硫氰酸铵(NH4SCN)并优化其添加量通过一步旋涂方法制备了垂直取向的高度结晶的2D (PEA)2(MA)4 Pb5I16(n = 3,4,5)薄膜(如图5b)所示),器件的PCE从最初的0.56%(不含NH4SCN)提高到11.01%,在湿度为55% ± 5%的空气中存放160 h后,未密封的器件仍保留其初始PCE的78.5%。同时,Qing等[19]选用DMSO和CH3NH3Cl(MACl)添加剂掺入前驱体溶液中,进行一步旋涂和溶剂退火工艺获得形貌均匀和高结晶度的 (PEA)2(MA)3Pb4I13薄膜;为增强钙钛矿的光吸收强度和稳定性[3-44],用甲酰胺阳离子(FA+)代替甲胺阳离子(MA+),并用Cs+取代部分FA+获得 (PEA)2(Cs0.15FA0.85)3Pb4I13 薄膜;(PEA)2(MA)3Pb4I13器件的PCE达到11.3%,平均PCE为10.7%(如图5c)所示),在相对湿度为45%的空气中,未封装的器件存储1个月后仍保持其初始PCE的50%,钙钛矿迅速降解;而(PEA)2(Cs0.15FA0.85)3Pb4I13 的PCE为12.1%,在暴露于相对湿度为45%的空气中30 d后,器件的PCE仍可保持高达90%的使用寿命。

Fu等[45]在以往NH4SCN添加剂的基础上加入NH4Cl添加剂通过提高2D钙钛矿结晶度以提高其PEC,基于旋涂法制备(PEA)2(MA)4Pb5I16薄膜的器件PCE高达14.1%(平均值为12.9% ± 0.8%);研究发现添加剂能够增加钙钛矿的结晶度和生长取向,从而改善载流子的传输性能,提高器件PCE(如图5d)所示)。随后Fu课题组[46]用4-氟苯乙胺(F-PEA)通过沉积法合成(F-PEA)2(MA)4Pb5I16薄膜,表明更大和更多的疏水性阳离子均可改善钙钛矿的稳定性,基于F-PEAI的准2D钙钛矿器件PCE最高达到14.5%。在空气湿度为40% ~ 50%,40 d后器件仍能够维持初始PCE的90%;这种方法为开发和设计新型有机间隔基阳离子用于合成高PCE和稳定性的低维钙钛矿提供了基础。

用氟代替氢原子可以增加材料的疏水性[47],氟化还可以改变分子能级、优化膜的形态,最终提高太阳能电池的PCE[48-49]。理论计算预测,氟掺杂的有机间隔基影响有机和无机亚晶格之间的相互作用[50]。实验研究方面,Shi等[51]通过一步旋涂合成(4FPEA)2(MA)4Pb5I16薄膜,测得器件的PCE达到了17.3%;基于4FPEA未封装的器件在空气中放置500 h后仍保持其初始PCE的93%,显示良好的湿度稳定性;在相同条件下,基于PEA器件的PCE下降至70%,PCE和稳定性都低于4FPEA器件。Zhang等[20]通过改变制备工艺采用真空极化处理方法制备了(PEA)2(MA)n?1PbnI3n+1薄膜,通过这种新设计,载流子提取得到了进一步改善,测得器件最高PCE为18.04%,在80 ℃下放置180 h器件仍能维持初始PCE的97.7%;在超过半年的常规储存后,仍能展现出初始PCE的96.1%,说明其良好的稳定性。

为探究无Pb无毒PSCs的性能,用同主族的Sn替换Pb进行研究,Liao等[52]使用一步旋涂法合成了(PEA)2(FA)n?1SnnI3n+1薄膜,含有20% PEA的器件PCE达到5.94%;基于3D FASnI3未封装PSCs的PCE在48 h内下降到其原始PCE的23%,但含20% PEA的2D PSCs的PCE在100 h内仍保持其初始PCE的96%;从3D到2D增强了材料稳定性并有效地抑制了钙钛矿氧化和分解,从而实现了器件稳定性,拓宽了纯锡钙钛矿在太阳能电池中的应用范围。

3.3 A′位其他铵类阳离子

RP相2D PSCs中A′位研究最多的陽离子是BA+和PEA+,为了探究PSCs的PCE、稳定性和耐湿性开始寻找不同性能的铵阳离子。Cheng等[53]调节前驱体与溶剂间相互作用借助热旋涂法合成了具有受控量子阱取向、相纯度高和晶粒尺寸均匀的(PA)2(MA)4Pb5I16薄膜(PA+为正丁铵阳离子),器件的PCE最大达到10.41%(如图6a)所示),在空气中存储500 h后,未封装器件的PCE仍大于初始PCE的97%。Ma等[54]通过旋涂法将大有机阳离子替换为小的PDA(PDA+为丙烷1,3-二铵阳离子),以减少无机钙钛矿层之间的距离,从而降低了跨层电导率以提高器件的PCE,其PCE 为13.0%(如图6b)所示),在存储1 000 h以上时,封装的器件仍保持其初始PCE的90%,而未封装的器件在70 ℃可以将其初始PCE保持100 h以上。Lai等[31]使用ThMA+(ThMA+:2-噻吩甲基铵)作为间隔阳离子,添加甲基氯化铵(MACl)辅助通过旋涂法沉积高取向(ThMA)2(MA)2Pb3I10薄膜,得到具有接近单晶质量的纳米棒状致密薄膜,测得器件的PCE为15%(如图6 c)所示),在1 000 h的存储时间后器件保留了初始PCE的90%。为进一步探索新型有机铵间隔阳离子对高效低维RP PSCs的作用,Chao等[55]使用短程有机铵间隔基:1-氨基-3-丁烯盐酸盐(BEACl)组成低维RP钙钛矿,短程有机铵阳离子有助于形成具有光滑表面、高结晶度和低缺陷态密度的低维(BEA)2(MA)3Pb4I13薄膜,测得器件的PCE达到16.1%(如图6d)所示),远高于同年基于(BA)2(MA)4Pb5I16的太阳能电池器件的PCE(8.71%);在湿度为80%的条件下,钙钛矿薄膜在1年以上没有明显产生PbI2杂质,具有高稳定性。

4 总结与展望

2D有机-无机杂化RP相钙钛矿比3D钙钛矿具有更高的稳定性,有机阳离子使其具有结构灵活性,显示出独特的光学和电学性能。本文主要讨论2D有机-无机杂化RP相钙钛矿结构和薄膜制备方法,以及2D RP相钙钛矿在太阳能电池中的应用。

2D有机-无机杂化RP相钙钛矿材料还可以在以下几个方面进行深入探索:1)探索 2D 杂化RP相钙钛矿的晶体取向对器件效率的影响,因为不同晶体取向引起结构不同,最后使器件的效率产生差异;2)2D杂化RP相钙钛矿会导致光学带隙的增加和电荷传输的减少,进而导致器件PCE的降低,应探寻提高2D钙钛矿效率的材料;3)在提高钙钛矿材料光伏器件稳定性和光电转换效率时,应考虑2D和3D混合钙钛矿材料的性能研究;4)在环境污染方面,考虑无毒、无污染和可循环使用的钙钛矿材料。

参考文献:

[1]    KOJIMA A,TESHIMA K,SHIRAI Y,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051.

[2]    SAHLI F,WERNER J,KAMINO B A,et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials,2018,17(9):820-826.

[3]    SALIBA M,MATSUI T,SEO J Y,et al. Cesium-containing triple cation perovskite solar cells:improved stability,reproducibility and high efficiency[J]. Energy & Environmental Science,2016,9(6):1989-1997.

[4]    EPERON G E,LEIJTENS T,BUSH K A,et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science,2016,354(6314):861-865.

[5]    SWARNKAR A,MARSHALL A R,SANEHIRA E M,et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science,2016,354(6308):92-95.

[6]    ZHAO Q,HAZARIKA A,CHEN X H,et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure[J]. Nature Communications,2019,10:2842.

[7]    LI Z,YANG M J,PARK J S,et al. Stabilizing perovskite structures by tuning tolerance factor:formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials,2016,28(1):284-292.

[8]    TRAVIS W,GLOVER E N K,BRONSTEIN H,et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites:a revised system[J]. Chemical Science,2016,7(7):4548-4556.

[9]    ZHENG X P,CHEN B,DAI J,et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy,2017,2(7):17102.

[10]  ZHANG F,BI D Q,PELLET N,et al. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science,2018,11(12):3480-3490.

[11]  ZHANG F,WANG Z Q,ZHU H W,et al. Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials[J]. Nano Energy,2017,41:469-475.

[12]  GUO J J,BAI Z C,MENG X F,et al. Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells:The effect of core metal on photovoltaic performance[J]. Solar Energy,2017,155:121-129.

[13]  LIU X C,ZHANG F,LIU Z,et al. Dopant-free and low-cost molecular “bee” hole-transporting materials for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry C,2017,5(44):11429-11435.

[14]  BAI Y,DONG Q F,SHAO Y C,et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene[J]. Nature Communications,2016,7:12806.

[15]  BELLA F,GRIFFINI G,CORREA-BAENA J P,et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers[J]. Science,2016,354(6309):203-206.

[16]  JIANG Y,QIU L B,JUAREZ-PEREZ E J,et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation[J]. Nature Energy,2019,4(7):585-593.

[17]  DOLZHENKO Y I,INABE T,MARUYAMA Y. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4[J]. Bulletin of the Chemical Society of Japan,1986,59(2):563-567.

[18]  TSAI H,NIE W Y,BLANCON J C,et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature,2016,536(7616):312-316.

[19]  QING J,LIU X K,LI M J,et al. Aligned and graded type-II ruddlesden-popper perovskite films for efficient solar cells[J]. Advanced Energy Materials,2018,8(21):1800185.

[20]  ZHANG J,QIN J J,WANG M S,et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient,high-fill-factor solar cells[J]. Joule,2019,3(12):3061-3071.

[21]  THRITHAMARASSERY GANGADHARAN D,MA D L. Searching for stability at lower dimensions:current trends and future prospects of layered perovskite solar cells[J]. Energy & Environmental Science,2019,12(10):2860-2889.

[22]  ZHANG F,KIM D H,ZHU K. 3D/2D multidimensional perovskites:Balance of high performance and stability for perovskite solar cells[J]. Current Opinion in Electrochemistry,2018,11:105-113.

[23]  KAGAN C R. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science,1999,286(5441):945-947.

[24]  ISHIHARA T,TAKAHASHI J,GOTO T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4[J]. Solid State Communications,1989,69(9):933-936.

[25]  WU X X,TRINH M T,NIESNER D,et al. Trap states in lead iodide perovskites[J]. Journal of the American Chemical Society,2015,137(5):2089-2096.

[26]  ZHANG F,LU H P,TONG J H,et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science,2020,13(4):1154-1186.

[27]  MITZI D B,FEILD C A,HARRISON W T A,et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature,1994,369(6480):467-469.

[28]  MITZI D B. Solution-processed inorganic semiconductors[J]. Journal of Materials Chemistry,2004,14(15):2355.

[29]  CALABRESE J,JONES N L,HARLOW R L,et al. Preparation and characterization of layered lead halide compounds[J]. Journal of the American Chemical Society,1991,113(6):2328-2330.

[30]  CAO D H,STOUMPOS C C,FARHA O K,et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society,2015,137(24):7843-7850.

[31]  LAI H T,KAN B,LIU T T,et al. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J]. Journal of the American Chemical Society,2018,140(37):11639-11646.

[32]  ZUO C T,SCULLY A D,VAK D,et al. Self-assembled 2D perovskite layers for efficient printable solar cells[J]. Advanced Energy Materials,2019,9(4):1803258.

[33]  MAO L L,KENNARD R M,TRAORE B,et al. Seven-layered 2D hybrid lead iodide perovskites[J]. Chem,2019,5(10):2593-2604.

[34]  WU G B,LI X,ZHOU J Y,et al. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing[J]. Advanced Materials,2019,31(42):1903889.

[35]  ZHOU N,SHEN Y H,LI L,et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells[J]. Journal of the American Chemical Society,2018,140(1):459-465.

[36]  ZHANG X,REN X D,LIU B,et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science,2017,10(10):2095-2102.

[37]  GAO L G,ZHANG F,CHEN X H,et al. Enhanced charge transport by incorporating formamidinium and cesium cations into two-dimensional perovskite solar cells[J]. Angewandte Chemie,2019,131(34):11863-11867.

[38]  JIANG Y Y,HE X Y,LIU T F,et al. Intralayer A-site compositional engineering of ruddlesden-popper perovskites for thermostable and efficient solar cells[J]. ACS Energy Letters,2019,4(6):1216-1224.

[39]  LIAN X M,CHEN J H,ZHANG Y Z,et al. Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells[J]. Journal of Materials Chemistry A,2019,7(33):19423-19429.

[40]  CAO D H,STOUMPOS C C,YOKOYAMA T,et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites[J]. ACS Energy Letters,2017,2(5):982-990.

[41]  CHEN Y N,SUN Y,PENG J J,et al. Composition engineering in two-dimensional Pb-Sn-alloyed perovskites for efficient and stable solar cells[J]. ACS Applied Materials & Interfaces,2018,10(25):21343-21348.

[42]  SMITH I C,HOKE E T,SOLIS-IBARRA D,et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition,2014,53(42):11232-11235.

[43]  ZHANG X Q,WU G,FU W F,et al. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%[J]. Advanced Energy Materials,2018,8(14):1702498.

[44]  EPERON G E,STRANKS S D,MENELAOU C,et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science,2014,7(3):982.

[45]  FU W F,WANG J,ZUO L J,et al. Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency[J]. ACS Energy Letters,2018,3(9):2086-2093.

[46]  FU W F,LIU H B,SHI X L,et al. Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells[J]. Advanced Functional Materials,2019,29(25):1900221.

[47]  BI D Q,GAO P,SCOPELLITI R,et al. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3[J]. Advanced Materials,2016,28(15):2910-2915.

[48]  DAI S X,ZHAO F W,ZHANG Q Q,et al. Fused nonacyclic electron acceptors for efficient polymer solar cells[J]. Journal of the American Chemical Society,2017,139(3):1336-1343.

[49]  LI X J,YAO J,ANGUNAWELA I,et al. Improvement of photovoltaic performance of polymer solar cells by rational molecular optimization of organic molecule acceptors[J]. Advanced Energy Materials,2018,8(23):1800815.

[50]  LERMER C,BIRKHOLD S T,MOUDRAKOVSKI I L,et al. Toward fluorinated spacers for MAPI-derived hybrid perovskites:synthesis,characterization,and phase transitions of (FC2H4NH3)2PbCl4[J]. Chemistry of Materials,2016,28(18):6560-6566.

[51]  SHI J S,GAO Y R,GAO X,et al. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability[J]. Advanced Materials,2019,31(37):1901673.

[52]  LIAO Y,LIU H,ZHOU W,et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance [J]. Journal of the American Chemical Society,2017,139(19):6693-6699.

[53]  CHENG P R,XU Z,LI J B,et al. Highly efficient ruddlesden-popper halide perovskite PA2MA4Pb5I16 solar cells[J]. ACS Energy Letters,2018,3(8):1975-1982.

[54]  MA C Q,SHEN D,NG T W,et al. 2D perovskites with short interlayer distance for high-performance solar cell application[J]. Advanced Materials,2018,30(22):1800710.

[55]  CHAO L F,NIU T T,XIA Y D,et al. Efficient and stable low-dimensional ruddlesden-popper perovskite solar cells enabled by reducing tunnel barrier[J]. The Journal of Physical Chemistry Letters,2019,10(6):1173-1179.

[責任编辑    田    丰]

猜你喜欢
钙钛矿阳离子无机
低杂质阳离子瓜儿胶在调理性香波中的应用趋势
钙钛矿结合钾 太阳能电池效率再提升
三维生物高分子氧化石墨烯复合凝胶对于阳离子燃料吸附的研究
无机化学教学中如何培养学生的学习兴趣
东莞市土壤环境背景水平初探
几种阳离子和葡萄糖对子一代达氏鲟精子活力的影响
基于不同添加剂的阻燃纤维专利技术综述
离子色谱法测定降雪中的五种阳离子方法研究
环保型钙钛矿太阳能电池研制成功
基于含Ni稀土钙钛矿LaNiTiO3的过氧化氢无酶传感器