变系数热传导方程反初值问题的拟边值方法

2023-03-16 12:54杨天浩孙伟
哈尔滨理工大学学报 2023年5期

杨天浩 孙伟

摘  要:针对一维区域上带有时间依赖系数的非齐次热传导方程的反初值问题,采用拟边值方法求解此问题。首先根据分离变量法得到问题的解,并根据问题解的表达式构造了正则化解;其次在原问题的解满足某些先验条件下,给出正则化参数选取的先验和后验方法,并在理论上严格证明了在此参数选取准则下,一维热传导方程反初值问题正则化解的收敛性;最后通过数值模擬表明,拟边值方法对于求解此反初值问题是有效和稳定的。

关键词:不适定问题;正则化参数;拟边值方法;热传导方程;误差估计

DOI:10.15938/j.jhust.2023.05.017

中图分类号: O241.8

文献标志码: A

文章编号: 1007-2683(2023)05-0136-07

Quasi-boundary Value Method for Backward Heat

Conduction Equation with Variable Coefficients

YANG Tianhao,  SUN Wei

(School of Science, Harbin University of Science and Technology, Harbin 150080, China)

Abstract:Aiming at the problem of inhomogeneous backward heat conduction equation with time-dependent coefficients in a one-dimensional region, the quasi-boundary value method is used to solve this problem. Firstly, the solution of the problem is obtained by separating variables, and according to the expression of the solution of the problem, the regular solution is constructed; secondly, when the solution of the original problem satisfies some prior conditions, the priori and posteriori methods for the regularization parameter are given respectively, and the convergence of the regularization solution of the problem of one-dimensional backward heat conduction equation under this parameter selection criterion is strictly proved; finally, numerical simulation shows that quasi-boundary value method is effective and stable.

Keywords:ill-posed problem; regularization parameter; quasi-boundary value method; heat conduction equation; error estimation

收稿日期: 2022-05-22

基金项目: 黑龙江省自然科学基金(LH2020A015).

作者简介:

杨天浩(1998—),男,硕士研究生.

通信作者:

孙  伟(1982—),女,博士,副教授,E-mail: mathsunwei@126.com.

0  引  言

热传导方程的反初值问题也被称为逆时问题,是热传导方程反问题的一种,在很多实际问题中有着广泛应用,例如热流、遥感技术、航天防护服表面温度控制等。此类问题是一个不适定问题[1],很难用传统的方法来解决,为了得到稳定的近似解,国内外学者对这类问题进行了研究,提出了很多方法,例如Tikhonov正则化方法[2-3]、滤波正则化方法[4]、拟逆方法[5-8]、拟边值方法[9-18]等。但目前大部分研究还是集中在齐次方程且测量数据只有一个,或者常系数非齐次方程的反初值问题,对变系数非齐次方程的研究较少,并且大部分研究只给出了正则化参数的先验选取策略,针对后验选取规则的研究也很少。

本文考虑如下一个一维带有时间依赖系数的非齐次热传导方程的反初值问题,

ut(x,t)-a(t)uxx(x,t)=f(x,t),0≤x≤L,0≤t≤T

u(0,t)=u(L,t)=0,0≤t≤T

u(x,T)=g(x),0≤x≤L(1)

其中f(x,t)是关于t的连续可微函数且f(x,t)∈L∞(0,T;L2[0,L]),g(x)∈L2[0,L],a(t)∈C∞[0,T],且存在正常数m和d,使得

0

反初值问题就是利用g(x)和f(x,t)带有噪声的测量数据gδ(x),fδ(x,t),求解u(x,0)=∶φ(x)。假设测量数据满足条件:

‖gδ(x)-g(x)‖L2[0,L]≤δ

‖fδ(x,t)-f(x,t)‖L∞(0,T;L2[0,L])≤δ

本文使用拟边值方法求解这个问题,拟边值方法也称为非局部边值方法,是一种用新的近似条件代替终值条件或边界条件的正则化方法,最早由Showalter[9]提出。拟边值方法已经被应用于求解各种类型方程的反问题中,例如,分数阶扩散方程[19-20]、非线性抛物方程[21]、椭圆型方程[16]等。

Triet Minh Le等在文[14]中提出了一種改进的正则化方法来求解问题(1),并给出了一种特殊情况下的正则化参数的先验选取规则。马宗立等[22]把这一方法推广到二维圆域上给出了误差估计。除此之外,还未见到其他文献研究此问题。本文所用的拟边值方法在求解u(x,0)时,与文[14]的方法是等价的,但是这两种方法计算正则化解的方式是不同的;文[14]中的正则化解的计算需要用到椭圆算子的特征值和特征函数,所以很难将其推广到高维一般区域中,而本文所使用的拟边值方法可以实现。本文不仅给出了正则化参数的先验选取规则,也研究了当解满足某种先验条件时的后验选取策略,根据相关引理和定理推导了正则化解和精确解的误差估计,最后用数值算例验证本文所采用的拟边值方法求解变系数热传导方程的反初值问题具有可行性。

下面用(·,·)和‖·‖分别表示L2[0,L]上的内积和范数。根据分离变量法,问题(1)的解形式上可以表示为

u(x,t)=∑∞n=1(e-λnA(t)φn+∫t0e-λn(A(t)-A(τ))fn(τ)dτ)ωn(x)

其中A(t)=∫t0a(s)ds,ωn(x)=2LsinnπxL,λn=

n2π2L2,fn(t)=(f(x,t),ωn(x)),φn=(φ(x),ωn(x)),

再令上式中t=T,得到

g(x)=∑∞n=1(e-λnA(T)φn+∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)

φ(x)=∑∞n=1gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτe-λnA(T)ωn(x)(2)

当n→∞时,λn→∞,(e-λnA(T))-1→∞,故问题(1)是不适定的。

定义算子K[23]:L2[0,L]→L2[0,L],

(Kφ)(x)=∫L0k(x,ξ)φ(ξ)dξ

其中k(x,ξ)=∑∞n=1e-λnA(T)ωn(x)ωξ(ξ),不难看出K:L2[0,L]→L2[0,L]是一个线性自伴紧算子。

1  拟边值方法

采用拟边值方法求解问题(1),修改(1)中的终值条件u(x,T)=g(x),得到如下问题:

uμ,δt(x,t)-a(t)uμ,δxx(x,t)=fδ(x,t),0≤x≤L,0≤t≤T

uμ,δ(0,t)=uμ,δ(L,t)=0,0≤t≤T

uμ,δ(x,T)+μuμ,δ(x,0)=gδ(x),0≤x≤L(3)

其中μ为正则化参数。利用分离变量法得到,

φμ,δ(x)∶=uμ,δ(x,0)=∑∞n=1gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτμ+e-λnA(T)ωn(x)(4)

上式即为拟边值方法构造的正则化解。定义

φμ(x)=∑∞n=1gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτμ+e-λnA(T)ωn(x)(5)

1.1  正则化参数的先验选取规则

引理1[22]  令η>0,0≤a≤b,则对任意的k>0,都有

eka1+ηekb≤η-ab

引理2  若p≥2,则对任意的n,有

μ(eλnA(T))2-p41+μeλnA(T)≤C2μ

其中C2是与n无关的常数。

证明:由p≥2,易得

μ(eλnA(T))2-p41+μeλnA(T)≤μ(eλnA(T))2-p4=μ(eλnA(T))p-24≤μ(eλ1A(T))p-24≤C2μ

引理3  给定∑∞n=1gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ和f(x,t)∈L∞(0,T;L2[0,L]),有

‖∑∞n=1(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)‖≤

2(‖g‖2+M‖f‖2L∞(0,T;L2[0,L]))其中M=∑∞n=1(∫T0e-λn(A(T)-A(τ))dτ)2。

证明:与文[16]中引理2.4类似。

定理1  若0<μ<1,问题(1)有精确解φ(x),

1)如果存在常数p和E1,满足(∑∞n=1λpnφ2n)12≤E1<+∞,则有

‖φμ(x)-φ(x)‖≤C1E1A(T)-lnμp2(o(1)+1)(μ→0+)

2)如果存在常数p和E2,满足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,则有

‖φμ(x)-φ(x)‖≤μP2E2,0

C2μE2,p≥2

其中C1,C2为正常数。

证明

‖φμ(x)-φ(x)‖=∑∞n=1μμ+e-λnA(T)gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτe-λnA(T)212

若φ(x)满足条件1),则,

‖φμ(x)-φ(x)‖2=∑∞n=1μ2λ-pn(μ+e-λnA(T))2λpnφ2n

当λnA(T)≤1时,令

S1=∑λnA(T)≤1μ2λpnφ2nλpn(μ+e-λnA(T))2≤∑λnA(T)≤1μ2λ-pne2λnA(T)(λpnφ2n)≤

∑λnA(T)≤1μ2λ-p1e2(λpnφ2n)

当λnA(T)>1时,令μZn=e-λnA(T)<1,则λn=-ln(μZn)A(T),

S2=∑λnA(T)>1μ2λpnφ2nλpn(μ+e-λnA(T))2=

∑λnA(T)>1μ2(μ+μZn)2(-ln(μZn)A(T))-pλpnφ2n=

∑λnA(T)>1-A(T)lnμp1(1+Zn)2lnμln(μZn)pλpnφ2n

再令γn=1(1+Zn)2lnμln(μZn)p,下证γn一致有界。

若0

γn=1(1+Zn)2lnμln(μZn)p≤1

若Zn>1,则lnZn>0,ln(μZn)=-λnA(T)<-1,接下来有

0

γn≤(1+lnZn)p(1+Zn)2≤(1+lnZn)p1+Zn<(1+lnZn)pZn=∶q(Zn)

又因为q′(Zn)=p(1+lnZn)p-1-(1+lnZn)pZ2n,故γn≤qmax(Zn)=ppe1-p=∶Qp,所以γn一致有界。当μ→0+,则

‖φμ(x)-φ(x)‖2≤(μ2λ-p1e2+Qp-A(T)lnμp)∑∞n=1λpnφ2n≤

C21E21(-A(T)lnμ)p(o(1)+1)

其中C21=max{λ-p1e2,Qp}。

若φ(x)满足条件(2),有

‖φμ(x)-φ(x)‖=∑∞n=1μe-λnp2A(T)μ+e-λnA(T)eλnp2A(T)φn212

再由引理1和引理2,得

‖φμ(x)-φ(x)‖≤μP2E2,0

C2μE2,p≥2(6)

定理得证。

定理2  在定理1的条件下,

1)若存在常数p和E1,满足(∑∞n=1λpnφ2n)12≤E1<+∞,令μ=δE11A(T)lnE1δp2,有

‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C1)E11A(T)lnE1δ-p2(o(1)+1)(δ→0+)

2)若存在常数p和E2,满足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,有

(a) 当0

‖φμ,δ(x)-φ(x)‖≤(2(M+1)+1)δpp+2E2p+22

(b) 当p≥2时,令μ=δE212,则

‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C2)E122δ12

证明

‖φμ,δ(x)-φμ(x)‖2=∑∞n=1gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτμ+e-λnA(T)-

gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτμ+e-λnA(T)ωn(x)2≤

2∑∞n=1(gδn-gn)2+|∫T0e-λn(A(T)-A(τ))(fδn(τ)-fn(τ))dτ|2(μ+e-λnA(T))2≤

2∑∞n=1gδn-gnμ2+2M∑∞n=1fδn(τ)-fn(τ)μ2≤

2(M+1)δ2μ2

‖φμ,δ(x)-φμ(x)‖≤2(M+1)δμ(7)

根据三角不等式,

‖φμ,δ(x)-φ(x)‖≤‖φμ,δ(x)-φμ(x)‖+‖φμ(x)-φ(x)‖,结合定理1,当φ(x)满足条件1),则

‖φμ,δ(x)-φ(x)‖≤C1E1A(T)-lnμp2(o(1)+1)+2(M+1)δμ

令μ=δE11A(T)lnE1δp2,当δ→0+,有

‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C1)E11A(T)lnE1δ-p2(o(1)+1)

当φ(x)满足条件2),则

‖φμ,δ(x)-φ(x)‖≤μP2E2+2(M+1)δμ,0

C2μE2+2(M+1)δμ,p≥2

故当0

‖φμ,δ(x)-φ(x)‖≤(2(M+1)+1)δpp+2E2p+22

当p≥2时,令μ=δE212,有

‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C2)E122δ12

定理得证。

1.2  正则化参数的后验选取规则

应用偏差原理,选择以下方程的解作为正则化参数:

‖μ(K+μI)-1(Kφμ,δ(x)- ∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x))‖=τδ

其中τ>2(M+1)是一個常数。

引理5  令ρ(μ)=‖μ(K+μI)-1(Kφμ,δ(x)-∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x))‖

如果(∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)2)12>τδ,则有

(a)ρ(μ)是一个连续函数;

(b)limμ→0ρ(μ)=0;

(c)limμ→∞ρ(μ)=∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)2;

(d)对任意的μ∈(0,∞),ρ(μ)是一个严格增函数。

证明:与文[16]中引理3.2.1类似。

定理3  令φ(x)为问题(1)的精确解,φμ,δ(x)为正则化解,μ为正则化参数;如果存在常数p和E2,满足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,有以下结论,

‖φμ,δ(x)-φ(x)‖≤

(τ+2(M+1)pp+2+2(M+1)·

1τ-2(M+1)2p+2E2p+22δpp+2,0

(τ+2(M+1))12+2(M+1)·

C22τ-2(M+1)12E122δ12,p≥2

其中C2为正常数。

证明  由三角不等式,

‖φμ,δ(x)-φ(x)‖≤‖φμ,δ(x)-φμ(x)‖+‖φμ(x)-φ(x)‖

当0

‖φμ(x)-φ(x)‖2=∑∞n=1-μμ+e-λnA(T)φnωn(x)2=

∑∞n=1μe-λnA(T)μ+e-λnA(T)p2μμ+e-λnA(T)1-p2

φn(e-λnA(T))p22=

∑∞n=1μe-λnA(T)μ+e-λnA(T)p

μμ+e-λnA(T)2p-p2p+2

φn(e-λnA(T))p22pp+2×

μμ+e-λnA(T)4-2pp+2φn(e-λnA(T))p24p+2≤

∑∞n=1(μe-λnA(T)μ+e-λnA(T)pμμ+e-λnA(T)2p-p2p+2×

φn(e-λnA(T))p22pp+2p+2ppp+2×

∑∞n=1μμ+e-λnA(T)4-2pp+2φn(e-λnA(T))p24p+2p+222p+2=

∑∞n=1μe-λnA(T)μ+e-λnA(T)p+22μμ+e-λnA(T)1-p2φn(e-λnA(T))p2ωn(x)2pp+2×∑∞n=1μμ+e-λnA(T)1-p2φn(e-λnA(T))p2ωn(x)4p+2≤

∑∞n=1μμ+e-λnA(T)2φne-λnA(T)ωn(x)2pp+2∑∞n=1φn(e-λnA(T))p2ωn(x)4p+2≤

∑∞n=1μμ+e-λnA(T)2(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)2pp+2E4p+22≤

∑∞n=1μμ+e-λnA(T)2(gn(x)-gδn(x)-

∫T0e-λn(A(T)-A(τ))(fn(τ)-fδn(τ))dτ)ωn(x)+

∑∞n=1μμ+e-λnA(T)2·(gδn(x)-

∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x)2pp+2E4p+22≤

(τ+2(M+1))2pp+2δ2pp+2E4p+22

‖φμ(x)-φ(x)‖≤(τ+2(M+1))pp+2δpp+2E2p+22(8)

當p≥2时,可以得到

‖φμ(x)-φ(x)‖2=∑∞n=1-μμ+e-λnA(T)φnωn(x)2=

∑∞n=1μe-λnA(T)μ+e-λnA(T) φne-λnA(T)2

=∑∞n=1μe-λnA(T)μ+e-λnA(T)2φne-λnA(T)φne-λnA(T)≤

∑∞n=1μe-λnA(T)μ+e-λnA(T)2φne-λnA(T)212∑∞n=1φne-λnA(T)212≤

∑∞n=1μμ+e-λnA(T)2φne-λnA(T)212∑∞n=1φne-λnA(T)212=

∑∞n=1μμ+e-λnA(T)2·(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)·

(∑∞n=1e2λnA(T)φ2n)12≤

∑∞n=1μμ+e-λnA(T)2(gn-gδn-

∫T0e-λn(A(T)-A(τ))(fn(τ)-fδn(τ))dτ)ωn(x)+

∑∞n=1μμ+e-λnA(T)2

(gδn-

∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x)E2≤

(δ2(M+1)+τδ)E2

故有

‖φμ(x)-φ(x)‖≤(τ+2(M+1))12E122δ12(9)

下面对1μ进行估计:

τδ≤∑∞n=1μμ+e-λnA(T)2((gn-gδn)-

∫T0e-λn(A(T)-A(τ))(fn(τ)-fδn(τ))dτ)ωn(x)+

∑∞n=1μμ+e-λnA(T)2(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)≤

∑∞n=1μ(eλnA(T))2-p41+μeλnA(T)2(e-λnA(T))-p2φn212+2(M+1)δ

当0

∑∞n=1μ(eλnA(T))2-p41+μeλnA(T)2(e-λnA(T))-p2φn212≤μ2+p2E2

当p≥2时,根据引理2,得

∑∞n=1μ(eλnA(T))2-p41+μeλnA(T)2(e-λnA(T))-p2φn212≤E2(C2μ)2

因此,

1μ≤1τ-2(M+1)22+pE2δ22+p,0

C22τ-2(M+1)12E2δ12,p≥2(10)

联合式(7)、(8)、(9)和(10),可得到定理结论。

2  数值实验

本节将列出两个数值算例来显示方法的可行性。测量数据是通过添加随机扰动生成

gδ=g+εg(2·rand(size(g))-1)

fδ=f+εf(2·rand(size(f))-1)

则误差水平δ=max{ε‖g‖,ε‖f‖}。

例1  令T=1,L=π,a(t)=2t+1,g(x)=u(x,1)=xsinxe2,f(x,t)=-2(2t+1)cosxet2+t,则反初值问题的解为u(x,0)=φ(x)=xsinx。

例2  令T=1,L=π,a(t)=2t+1,g(x)=u(x,1)=2sin2xe2,f(x,t)=6(2t+1)sin2xet2+t,反初值问题的解为u(x,0)=φ(x)=2sin2x。

例1的解满足(∑∞n=1λpnφ2n)12≤E1<+∞,如图1所示,本文只画出正则化参数先验选择规则下正则化解和精确解的图象;例2的解满足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,图2中画出了先验和后验正则化参数选择规则下近似解和精确解的图象;两个例子表明本文提出的正则化参数选取策略是有效的。

3  結   论

本文考虑了带有时间依赖系数的一维热传导方程的反初值问题,采用拟边值方法构造正则化解,并分别给出了正则化参数的先验和后验选取准则,最后用数值算例验证了拟边值方法的有效性。

参 考 文 献:

[1]  HADAMARD J. Lectures on the Cauchy′s Problems in Linear Partial Differential Equations[M]. New Haven: Yale University Press, 1923.

[2]  LIU C S, CHANG C W, CHANG J R. Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems[J]. Computer Modeling in Engineering and Sciences, 2006, 12(1): 67.

[3]  HUANG Y Z, ZHENG Q. Regularization for a Class of Ill-posed Cauchy Problems[J]. Proceedings of the American Mathematical Society, 2005, 133(10): 3005.

[4]  QIN H H, WEI T. Some Filter Regularization Methods for a Backward Heat Conduction Problem[J]. Applied Mathematics and Computation, 2011, 217(24): 10317.

[5]  ALEKSEEVA S M, YURCHUK N I. The Quasireversibility Method for the Problem of the Control of an Initial Condition for the Heat Equation with an Integral Boundary Condition[J]. Differential Equations, 1998, 34(4): 493.

[6]  CLARK G W, OPPENHEIMER S F. Quasireversibility Methods for Non-well Posed Problems[J]. Electronic Journal of Differential Equations, 1994(8): 1.

[7]  HUANG Y Z. Modified Quasi-reversibility Method for Final Value Problems in Banach Spaces[J]. Journal of Mathematical Analysis and Applications, 2008, 340(2): 757.

[8]  LIUJ J, YAMAMOTO M. A Backward Problem for the Time-fractional Diffusion Equation[J]. Applicable Analysis, 2010, 89(11): 1769.

[9]  SHOWALTER R E. The Final Value Problem for Evolution Equations[J]. Journal of Mathematical Analysis and Applications, 1974(47):563.

[10]HO D N, DUC N V, LESNIC D. Regularization of Parabolic Equations Backward in Time by a Non-local Boundary Value Problem Method[J]. IMA Journal of Applied Mathematics, 2010, 75(2): 291.

[11]TRONG D D, QUAN P H, TUAN N H. A Quasiboundary Value Method for Regularizing Nonlinear Ill-posed Problems[J]. Electronic Journal of Differential Equations,2009(109): 1.

[12]HO D N, DUC N V, SAHLI H. A Non-local Boundary Value Problem Method for Parabolic Equations Backward in Time[J]. Journal of Mathematical Analysis and Applications, 2008, 345(2): 805.

[13]FENG X L, ELDEN L, FU C L. A Quasi-boundary-value Method for the Cauchy Problem for Elliptic Equations with Non-homogeneous Neumann Data[J]. Journal of Inverse and Ill-posed Problems, 2010, 18(6): 617.

[14]LE T M, PHAM Q H, DANG T D, et al. A Backward Parabolic Equation with a Time-dependent Coefficient: Regularization and Error Estimates[J]. Journal of Computational and Applied Mathematics, 2013, 237(1): 432.

[15]LIU J J. Numerical Solution of Forward and Backward Problem for 2-D Heat Conduction Equation[J]. Journal of Computational and Applied Mathematics, 2002, 145(2): 459.

[16]YANG F, SUN Y R, LI X X, et al. The Quasi-boundary Value Method for Identifying the Initial Value of Heat Equation on a Columnar Symmetric Domain[J]. Numerical Algorithms, 2019, 82(2): 623.

[17]DENCHE M, BESSILA K. A Modified Quasi-boundary Value Method for Ill-posed Problems[J]. Journal of Mathematical Analysis and Applications, 2005, 301(2),419.

[18]HO D N, DUC N V, LESNIC D. A Non-local Boundary Value Problem Method for the Cauchy Problem for Elliptic Equations[J]. Inverse Problems, 2009, 25(5): 055002.

[19]WEI T, WANG J G. A Modified Quasi-boundary Value Method for the Backward Time-fractional Diffusion Problem[J]. European Series in Applied and Industrial Mathematics: Mathematical Modelling and Numerical Analysis, 2014, 48(2): 3.

[20]WANG J G, ZHOU Y B, WEI T. A Posteriori Regularization Parameter Choice Rule for the Quasiboundary Value Method for the Backward Time-fractional Diffusion Problem[J]. Applied Mathematics Letters, 2013, 26: 741.

[21]HO D N, DUC N V, LESNIC D. Regularization of Parabolic Equations Backward in Time by a Non-local Boundary Value Problem Method[J]. IMA Journal of Applied Mathematics, 2010, 75: 291.

[22]MA Z L, YUE S F. Stability of the Backward Problem of Parabolic Equation with Time-dependent Reaction Coefficient[J]. Journal of University of Science and Technology of China, 2019, 49(5): 345.

[23]KIRSCH A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer, 1996.

(編辑:温泽宇)